Profitability and Budgeting of Kenaf Cultivation and Fiber Production in Kelantan Districts

The purpose of the analysis is estimation of viability and profitability of kenaf plant farming in Kelantan State. The monetary information was gathered through interviewing kenaf growers as well group discussion. In addition, the production statistics were collected from Kenaf factory administrative group. The monetary data were analyzed using the Precision financial Calculator. For kenaf production per hectare three scenarios of productivity were adopted, they were 15, 12 and ten; the research results exposed that, when kenaf productivity was 15 ton and the agronomist received financial supports from kenaf administration, the margin profit reached up to 37% which is almost dual profitability that is expected without government support. The financial analysis explains that, the adopted scenarios of the productivity are feasible when Benefit Cost Ratio (BCR) was used as financial indicator. Nonetheless, the kenaf productivity of 15 ton is the superlative viable among the others and payback period is 5 years which equals to middle period time to return the invested amount back. The study concluded that for the farmer to increase the productivity of kenaf per hectare the well farming practices as well as continuously farmers financial support are highly needed.

Biomechanical Findings in Patients with Bipartite Medial Cuneiforms

Bipartite medial cuneiforms are relatively rare but may play a significant role in biomechanical and gait abnormalities. It is believed that a bipartite medial cuneiform may alter the available range of motion due to its larger morphological variant, thus limiting the metatarsal plantarflexion needed to achieve adequate hallux dorsiflexion for normal gait. Radiographic and clinical assessment were performed on two patients who reported with foot pain along the first ray. Both patients had visible bipartite medial cuneiforms on MRI. Using gait plate and Metascan ™ analysis, both were noted to have four measurements far beyond the expected range. Medial and lateral heel peak pressure, hallux peak pressure, and 1st metatarsal peak pressure were all noted to be increased. These measurements are believed to be increased due to the hindrance placed on the available ROM of the first ray by the increased size of the medial cuneiform. A larger patient population would be needed to fully understand this developmental anomaly.

Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.

Development of Electrospun Membranes with Defined Polyethylene Collagen and Oxide Architectures Reinforced with Medium and High Intensity Statins

Cardiovascular diseases (CVD) are related to affectations of the heart and blood vessels, within these are pathologies such as coronary or peripheral heart disease, caused by the narrowing of the vessel wall (atherosclerosis), which is related to the accumulation of Low-Density Lipoproteins (LDL) in the arterial walls that leads to a progressive reduction of the lumen of the vessel and alterations in blood perfusion. Currently, the main therapeutic strategy for this type of alteration is drug treatment with statins, which inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), responsible for modulating the rate of cholesterol production and other isoprenoids in the mevalonate pathway. This enzyme induces the expression of LDL receptors in the liver, increasing their number on the surface of liver cells, reducing the plasma concentration of cholesterol. On the other hand, when the blood vessel presents stenosis, a surgical procedure with vascular implants is indicated, which are used to restore circulation in the arterial or venous bed. Among the materials used for the development of vascular implants are Dacron® and Teflon®, which perform the function of re-waterproofing the circulatory circuit, but due to their low biocompatibility, they do not have the ability to promote remodeling and tissue regeneration processes. Based on this, the present research proposes the development of a hydrolyzed collagen and polyethylene oxide electrospun membrane reinforced with medium and high-intensity statins, so that in future research it can favor tissue remodeling processes from its microarchitecture.

Energy Policy in Nigeria: Prospects and Challenges

Energy is the major force that drives any country`s socio-economic development. Without electricity, the country could be at risk of losing many potential investors. As such, good policy implementation could play a significant role in harnessing all the available energy resources. Nigeria has the prospects of meeting its energy demand and supply if there are good policies and proper implementation of them. The current energy supply needs to improve in order to meet the present and future demand. Sustainable energy development is the way forward. Renewable energy plays a significant role in socio-economic development of any country. Nigeria is a country blessed with abundant natural resources such as, solar radiation for solar power, water for hydropower, wind for wind power, and biomass from both plants and animal’s waste. Both conventional energy (fossil fuel) and unconventional energy (renewable) could be harmonized like in the case of energy mix or biofuels. Biofuels like biodiesel could be produced from biomass and combined with petro-diesel in different ratios. All these can be achieved if good policy is in place. The challenges could be well overcome with good policy, masses awareness, technological knowledge and other incentives that can attract investors in Nigerian energy sector.

Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Trial of Fecal Microbial Transplantation for the Prevention of Canine Atopic Dermatitis

The skin-gut axis defines the relationship between the intestinal microbiota and the development of pathological skin diseases. Low diversity within the gut can predispose to the development of allergic skin conditions, and a greater diversity of the gastrointestinal microflora has been associated with a reduction of skin flares in people with atopic dermatitis. Manipulation of the gut microflora has been used as a treatment option for several conditions in people, but there is limited data available on the use of fecal transplantation as a preventative measure in either people or dogs. Six, 4-month-old pups from a litter of 10 were presented for diarrhea and/or signs of skin disease (chronic scratching, otitis externa). Of these pups, two were given probiotics with a resultant resolution of diarrhea. The other four pups were given fecal transplantation, either as a sole treatment or in combination with other treatments. Follow-up on the litter of 10 pups was performed at 18 months of age. At this stage, three out of the four pups that had received fecal transplantation had resolved all clinical signs and had no recurrence of either skin or gastrointestinal symptoms, the other pup had one episode of Malassezia otitis. Of the remaining six pups from the litter, all had developed at least one episode of Malassezia otitis externa within the period of five to 18 months of age. Two pups had developed two Malassezia otitis infections, and one had developed three Malassezia otitis infections during this period. Favrot’s criteria for the diagnosis of canine atopic dermatitis include chronic or recurrent Malassezia infections by the age of three years. Early results from this litter predict a reduction in the development of canine atopic disease in dogs given fecal microbial transplantation. Follow-up studies at three years of age and within a larger population of dogs can enhance understanding of the impact of early fecal transplantation in the prevention of canine atopic dermatitis.

Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data

This paper describes a two-stage methodology derived from IMC (Internal Model Control) for tuning a PID (Proportional-Integral-Derivative) controller for levels or other integrating processes in an industrial environment. Focus is ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need of time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary PI (Proportional-Integral) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.

Physicochemical and Thermal Characterization of Starch from Three Different Plantain Cultivars in Puerto Rico

Plantain contains starch as the main component and represents a relevant source of this carbohydrate. Starches from different cultivars of plantain and bananas have been studied for industrialization purposes due to their morphological and thermal characteristics and their influence in food products. This study aimed to characterize the physical, chemical, and thermal properties of starch from three different plantain cultivated in Puerto Rico: Maricongo, Maiden and FHIA 20. Amylose and amylopectin content, color, granular size, morphology, and thermal properties were determined. According to the amylose content in starches, FHIA 20 presented lowest content of the three cultivars studied. In terms of color, Maiden and FHIA 20 starches exhibited significantly higher whiteness indexes compared to Maricongo starch. Starches of the three cultivars had an elongated-ovoid morphology, with a smooth surface and a non-porous appearance. Regardless of similarities in their morphology, FHIA 20 exhibited a lower aspect ratio since its granules tended to be more elongated. Comparison of the thermal properties of starches showed that initial starch gelatinization temperature was similar among cultivars. However, FHIA 20 starch presented a noticeably higher final gelatinization temperature (87.95°C) and transition enthalpy than Maricongo (79.69°C) and Maiden (77.40°C). Despite similarities, starches from plantain cultivars showed differences in their composition and thermal behavior. This represents an opportunity to diversify plantain starch use in food-related applications.

Technical, Environmental, and Financial Assessment for the Optimal Sizing of a Run-of-River Small Hydropower Project: A Case Study in Colombia

Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes’ cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an internal rate of return (IRR) 1.5 times higher than the discount rate. 

A Simulation Tool for Projection Mapping Based on Mapbox and Unity

A simulation tool is proposed for big-scale projection mapping events. The tool has four main functions based on Mapbox and Unity utilities. The first function is building three-dimensional models of real cities using Mapbox. The second function is movie projections to some buildings in real cities using Unity. The third is a movie sending function from a PC to a virtual projector. The fourth function is mapping movies with fitting buildings. The simulation tool was adapted to a real projection mapping event held in 2019. The event completed, but it faced a severe problem in the movie projection to the target building. Extra tents were set in front of the target building, and the tents became obstacles to the movie projection. The simulation tool developed herein could reconstruct the problems of the event. Therefore, if the simulation tool was developed before the 2019 projection mapping event, the problem of the tents being obstacles could have been avoided using the tool. Moreover, we confirmed that the simulation tool is useful for planning future projection mapping events to avoid various extra equipment obstacles, such as utility poles, planting trees, and monument towers.

Influence of Laser Treatment on the Growth of Sprouts of Different Wheat Varieties

Cereals are considered as a strategic product in human life and their demand is increasing with the growth of world population. Increasing wheat production is important for the country. One of the ways to solve the problem is to develop and implement new, environmentally and economically acceptable technologies. Such technologies include pre-sowing treatment of seed with a laser and associative nitrogen-fixing bacteria - Azospirillum brasilense. In the region there are the wheat varieties - Dika and Lomtagora, which are among the most common in Georgia. Dika is a frost-resistant wheat, with a high ability to adapt to the environment, resistant to falling and it is sown in highlands. Lomtagora 126 differs with its winter and drought resistance, and it has a great ability to germinate. Lomtagora is characterized by a strong root system and a high budding capacity. It is an early variety, fall-resistant, easy to thresh and suitable for mechanized harvesting with large and red grains. This paper presents some preliminary experimental results where a continuous CO2 laser with a power of 25-40 W was used to radiate grains at a flow rate of 10 and 15 cm/sec. The treatment was carried out on grains of the Triticum aestivum L. var. Lutescens (local variety name - Lomtagora 126), and Triticum carthlicum Nevski (local variety name - Dika). Here the grains were treated with A. brasilense isolate (108-109 CFU/ml), which was isolated from the rhizosphere of wheat. It was observed that the germination of the wheat was not significantly influenced by either laser or bacteria treatment. The results of our research show that combined treatment with laser and A. brasilense significantly influenced the germination of wheat. In the case of the Lomtagora 126 variety, grains were exposed to the beam on a speed of 10 cm/sec, only slightly improved the growth for 38-day seedlings, in case of exposition of grains with a speed of 15 cm/sec - by 23%. Treatment of seeds with A. brasilense in both exposed and non-exposed variants led to an improvement in the growth of seedlings, with A. brasilense alone - by 22%, and with combined treatment of grains - by 29%. In the case of the Dika variety, only exposure led to growth by 8-9%, and the combined treatment - by 10-15%, in comparison with the control variant. Superior effect on growth of seedlings of different varieties was achieved with the combinations of laser treatment on grains in a beam of 15 cm/sec (radiation power 30-40 W) and in addition of A. brasilense - nitrogen fixing bacteria. Therefore, this is a promising application of A. brasilense as active agents of bacterial fertilizers due to their ability of molecular nitrogen fixation in cereals in combination with laser irradiation: choosing a proper strain gives a good ability to colonize roots of agricultural crops, providing a high nitrogen-fixing ability and the ability to mobilize soil phosphorus, and laser treatment stimulates natural processes occurring in plant cells, will increase the yield.

Heavy Deformation and High-Temperature Annealing Microstructure and Texture Studies of TaHfNbZrTi Equiatomic Refractory High Entropy Alloy

The refractory alloys are crucial for high-temperature applications to improve performance and reduce cost. They are used in several applications such as aerospace, outer space, military and defense, nuclear powerplants, automobiles, and industry. The conventional refractory alloys show greater stability at high temperatures and in contrast they have operational limitations due to their low melting temperatures. However, there is a huge requirement to improve the refractory alloys’ operational temperatures and replace the conventional alloys. The newly emerging refractory high entropy alloys (RHEAs) could be alternative materials for conventional refractory alloys and fulfill the demands and requirements of various practical applications in the future. The RHEA TaHfNbZrTi was prepared through an arc melting process. The annealing behavior of severely deformed equiatomic RHEATaHfNbZrTi has been investigated. To obtain deformed condition, the alloy is cold-rolled to 90% thickness reduction and then subjected to an annealing process to observe recrystallization and microstructural evolution in the range of 800 °C to 1400 °C temperatures. The cold-rolled – 90% condition shows the presence of microstructural heterogeneity. The annealing microstructure of 800 °C temperature reveals that partial recrystallization and further annealing treatment carried out annealing treatment in the range of 850 °C to 1400 °C temperatures exhibits completely recrystallized microstructures, followed by coarsening with a degree of annealing temperature. The deformed and annealed conditions featured the development of body-centered cubic (BCC) fiber textures. The experimental investigation of heavy deformation and followed by high-temperature annealing up to 1400 °C temperature will contribute to the understanding of microstructure and texture evolution of emerging RHEAs.

Computational Fluid Dynamics Study on Water Soot Blower Direction in Tangentially Fired Pulverized-Coal Boiler

In this study, Computational Fluid Dynamics (CFD) was utilized to simulate and predict the path of water from water soot blower through an ambient flow field in 300-megawatt tangentially burned pulverized coal boiler that utilizes a water soot blower as a cleaning device. To predict the position of the impact of water on the opposite side of the water soot blower under identical conditions, the nozzle size and water flow rate were fixed in this investigation. The simulation findings demonstrated a high degree of accuracy in predicting the direction of water flow to the boiler's water wall tube, which was validated by comparison to experimental data. Results show maximum deviation value of the water jet trajectory is 10.2%.

An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

The most important process of the water treatment plant process is coagulation, which uses alum and poly aluminum chloride (PACL). Therefore, determining the dosage of alum and PACL is the most important factor to be prescribed. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for chemical dose prediction, as used for coagulation, such as alum and PACL, with input data consisting of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of the Bangkhen Water Treatment Plant (BKWTP), under the authority of the Metropolitan Waterworks Authority of Thailand. The data were collected from 1 January 2019 to 31 December 2019 in order to cover the changing seasons of Thailand. The input data of ANN are divided into three groups: training set, test set, and validation set. The coefficient of determination and the mean absolute errors of the alum model are 0.73, 3.18 and the PACL model are 0.59, 3.21, respectively.

Study of the Thermal Performance of Bio-Sourced Materials Used as Thermal Insulation in Buildings under Humid Tropical Climate

In the fight against climate change, the energy consuming building sector must also be taken into account to solve this problem. In this case thermal insulation of buildings using bio-based materials is an interesting solution. Therefore, the thermal performance of some materials of this type has been studied. The advantages of these natural materials of plant origin are multiple, biodegradable, low economic cost, renewable and readily available. The use of biobased materials is widespread in the building sector in order to replace conventional insulation materials with natural materials. Vegetable fibers are very important because they have good thermal behaviour and good insulating properties. The aim of using bio-sourced materials is in line with the logic of energy control and environmental protection, the approach is to make the inhabitants of the houses comfortable and reduce their energy consumption (energy efficiency). In this research we will present the results of studies carried out on the thermal conductivity of banana leaves, latan leaves, vetivers fibers, palm kernel fibers, sargassum, coconut leaves, sawdust and bulk sugarcane leaves. The study on thermal conductivity was carried out in two ways, on the one hand using the flash method, and on the other hand a so-called hot box experiment was carried out. We will discuss and highlight a number of influential factors such as moisture and air pockets present in the samples on the thermophysical properties of these materials, in particular thermal conductivity. Finally, the result of a thermal performance test of banana leaves on a roof in Haiti will also be presented in this work.

Environmental Study on Urban Disinfection Using an On-site Generation System

In this experimental study, the behaviors of Mixed Oxidant solution components (MOS) and sodium hypochlorite (HYPO) as the most commonly applied surface disinfectant were compared through the effectiveness of chlorine disinfection as a function of the contact time and residual chlorine. In this regard, the variation of pH, free available chlorine (FAC) concentration, and electric conductivity (EC) of disinfection solutions in different concentrations were monitored over 48 h contact time. In parallel, the plant stress activated by chlorine-based disinfectants was assessed by comparing MOS and HYPO. The elements of pH and EC in the plant-soil and their environmental impacts, spread by disinfection solutions were analyzed through several concentrations of FAC including 500 mg/L, 1000 mg/L, and 5000 mg/L in irrigated water. All the experiments were carried out at the service station of Sant Cugat, Spain. The outcomes indicated lower pH and higher durability of MOS than HYPO at the same concentration of FAC which resulted in promising stability of FAC within MOS. Furthermore, the pH and EC value of plant-soil irrigated by NaOCl solution were higher than that of MOS solution at the same FAC concentration. On-site generation of MOS as a safe chlorination option might be considered an imaginary future of smart cities.

Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia

The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam.  Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area. 

Chemistry and Biological Activity of Feed Additive for Poultry Farming

Essential oils are one of the most important groups of biologically active substances present in plants. Due to the chemical diversity of components, essential oils and their preparations have a wide spectrum of pharmacological action. They have bactericidal, antiviral, fungicidal, antiprotozoal, anti-inflammatory, spasmolytic, sedative and other activities. They are expectorant, spasmolytic, sedative, hypotensive, secretion enhancing, antioxidant remedies. Based on preliminary pharmacological studies, we have developed a formulation called “Phytobiotic” containing essential oils, a feed additive for poultry as an alternative to antibiotics. Phytobiotic is a water-soluble powder containing a composition of essential oils of thyme, clary, monarda and auxiliary substances: dry extract of liquorice and inhalation lactose. On this stage of research, the goal was to study the chemical composition of provided phytobiotic, identify the main substances and determine their quantity, investigate the biological activity of phytobiotic through in vitro and in vivo studies. Using gas chromatography-mass spectrometry, 38 components were identified in phytobiotic, representing acyclic-, monocyclic-, bicyclic-, and sesquiterpenes. Together with identification of main active substances, their quantitative content was determined, including acyclic terpene alcohol β-linalool, acyclic terpene ketone linalyl acetate, monocyclic terpenes: D-limonene and γ-terpinene, monocyclic aromatic terpene thymol. Provided phytobiotic has pronounced and at the same time broad spectrum of antibacterial activity. In the cell model, phytobiotic showed weak antioxidant activity, and it was stronger in the ORAC (chemical model) tests. Meanwhile anti-inflammatory activity was also observed. When fowls were supplied feed enriched with phytobiotic, it was observed that gained weight of the chickens in the experimental group exceeded the same data for the control group during the entire period of the experiment. The survival rate of broilers in the experimental group during the growth period was 98% compared to -94% in the control group. As a result of conducted researches probable four different mechanisms which are important for the action of phytobiotics were identified: sensory, metabolic, antioxidant and antibacterial action. General toxic, possible local irritant and allergenic effects of phytobiotic were also investigated. Performed assays proved that formulation is safe.

Study of the Energy Efficiency of Buildings under Tropical Climate with a View to Sustainable Development: Choice of Material Adapted to the Protection of the Environment

In the context of sustainable development and climate change, the adaptation of buildings to the climatic context in hot climates is a necessity if we want to improve living conditions in housing and reduce the risks to the health and productivity of occupants due to thermal discomfort in buildings. One can find a wide variety of efficient solutions but with high costs. In developing countries, especially tropical countries, we need to appreciate a technology with a very limited cost that is affordable for everyone, energy efficient and protects the environment. Biosourced insulation is a product based on plant fibers, animal products or products from recyclable paper or clothing. Their development meets the objectives of maintaining biodiversity, reducing waste and protecting the environment. In tropical or hot countries, the aim is to protect the building from solar thermal radiation, a source of discomfort. The aim of this work is in line with the logic of energy control and environmental protection, the approach is to make the occupants of buildings comfortable, reduce their carbon dioxide emissions (CO2) and decrease their energy consumption (energy efficiency). We have chosen to study the thermo-physical properties of banana leaves and sawdust, especially their thermal conductivities, direct measurements were made using the flash method and the hot plate method. We also measured the heat flow on both sides of each sample by the hot box method. The results from these different experiences show that these materials are very efficient used as insulation. We have also conducted a building thermal simulation using banana leaves as one of the materials under Design Builder software. Air-conditioning load as well as CO2 release was used as performance indicator. When the air-conditioned building cell is protected on the roof by banana leaves and integrated into the walls with solar protection of the glazing, it saves up to 64.3% of energy and avoids 57% of CO2 emissions.