Surface Phonon Polariton in InAlGaN Quaternary Alloys

III-nitride quaternary InxAlyGa1-x-yN alloys have experienced considerable interest as potential materials for optoelectronic applications. Despite these interesting applications and the extensive efforts to understand their fundamental properties, research on its fundamental surface property, i.e., surface phonon polariton (SPP) has not yet been reported. In fact, the SPP properties have been shown to provide application for some photonic devices. Hence, there is an absolute need for thorough studies on the SPP properties of this material. In this work, theoretical study on the SPP modes in InAlGaN quaternary alloys are reported. Attention is focus on the wurtzite (α-) structure InxAlyGa1-x-yN semi-crystal with different In composition, x ranging from 0 to 0.10 and constant Al composition, y = 0.06. The SPP modes are obtained through the theoretical simulation by means of anisotropy model. The characteristics of SP dispersion curves are discussed. Accessible results in terms of the experimental point of view are also given. Finally, the results revealed that the SPP mode of α-InxAlyGa1-x-yN semiconductors exhibits two-mode behavior.

High Perfomance Communication Protocol for Wireless Ad-Hoc Sensor Networks

In order to monitor for traffic traversal, sensors can be deployed to perform collaborative target detection. Such a sensor network achieves a certain level of detection performance with the associated costs of deployment and routing protocol. This paper addresses these two points of sensor deployment and routing algorithm in the situation where the absolute quantity of sensors or total energy becomes insufficient. This discussion on the best deployment system concluded that two kinds of deployments; Normal and Power law distributions, show 6 and 3 times longer than Random distribution in the duration of coverage, respectively. The other discussion on routing algorithm to achieve good performance in each deployment system was also addressed. This discussion concluded that, in place of the traditional algorithm, a new algorithm can extend the time of coverage duration by 4 times in a Normal distribution, and in the circumstance where every deployed sensor operates as a binary model.

Perception of Farmers and Agricultural Professionals on Changes in Productivity and Water Resources in Ethiopia

In this paper, perceptions of actors on changes in crop productivity, quantity and quality of water, and determinants of their perception are analyzed using descriptive statistics and ordered logit model. Data collected from 297 Ethiopian farmers and 103 agricultural professionals from December 2009 to January 2010 are employed. Results show that the majority of the farmers and professionals recognized decline in water resources, reasoning climate changes and soil erosion as some of the causes. However, there is a variation in views on changes in productivity. The household asset, education level, age and geographical positions are found to affect farmers- perception on changes in crop productivity. But, the study underlines that there is no evidence that farmers- economic status, age, or education level affects recognition of degradation of water resources. Thus, more focus shall be given on providing them different coping mechanisms and alternative resource conserving technologies than educating about the problems.

Particle Swarm Optimization Based Genetic Algorithm for Two-Stage Transportation Supply Chain

Supply chain consists of all stages involved, directly or indirectly, includes all functions involved in fulfilling a customer demand. In two stage transportation supply chain problem, transportation costs are of a significant proportion of final product costs. It is often crucial for successful decisions making approaches in two stage supply chain to explicit account for non-linear transportation costs. In this paper, deterministic demand and finite supply of products was considered. The optimized distribution level and the routing structure from the manufacturing plants to the distribution centres and to the end customers is determined using developed mathematical model and solved by proposed particle swarm optimization based genetic algorithm. Numerical analysis of the case study is carried out to validate the model.

An E-learning System Architecture based on Cloud Computing

The massive proliferation of affordable computers, Internet broadband connectivity and rich education content has created a global phenomenon in which information and communication technology (ICT) is being used to transform education. Therefore, there is a need to redesign the educational system to meet the needs better. The advent of computers with sophisticated software has made it possible to solve many complex problems very fast and at a lower cost. This paper introduces the characteristics of the current E-Learning and then analyses the concept of cloud computing and describes the architecture of cloud computing platform by combining the features of E-Learning. The authors have tried to introduce cloud computing to e-learning, build an e-learning cloud, and make an active research and exploration for it from the following aspects: architecture, construction method and external interface with the model.

Using Data Mining Techniques for Finding Cardiac Outlier Patients

In this paper we used data mining techniques to identify outlier patients who are using large amount of drugs over a long period of time. Any healthcare or health insurance system should deal with the quantities of drugs utilized by chronic diseases patients. In Kingdom of Bahrain, about 20% of health budget is spent on medications. For the managers of healthcare systems, there is no enough information about the ways of drug utilization by chronic diseases patients, is there any misuse or is there outliers patients. In this work, which has been done in cooperation with information department in the Bahrain Defence Force hospital; we select the data for Cardiac patients in the period starting from 1/1/2008 to December 31/12/2008 to be the data for the model in this paper. We used three techniques for finding the drug utilization for cardiac patients. First we applied a clustering technique, followed by measuring of clustering validity, and finally we applied a decision tree as classification algorithm. The clustering results is divided into three clusters according to the drug utilization, for 1603 patients, who received 15,806 prescriptions during this period can be partitioned into three groups, where 23 patients (2.59%) who received 1316 prescriptions (8.32%) are classified to be outliers. The classification algorithm shows that the use of average drug utilization and the age, and the gender of the patient can be considered to be the main predictive factors in the induced model.

Autonomous Robots- Visual Perception in Underground Terrains Using Statistical Region Merging

Robots- visual perception is a field that is gaining increasing attention from researchers. This is partly due to emerging trends in the commercial availability of 3D scanning systems or devices that produce a high information accuracy level for a variety of applications. In the history of mining, the mortality rate of mine workers has been alarming and robots exhibit a great deal of potentials to tackle safety issues in mines. However, an effective vision system is crucial to safe autonomous navigation in underground terrains. This work investigates robots- perception in underground terrains (mines and tunnels) using statistical region merging (SRM) model. SRM reconstructs the main structural components of an imagery by a simple but effective statistical analysis. An investigation is conducted on different regions of the mine, such as the shaft, stope and gallery, using publicly available mine frames, with a stream of locally captured mine images. An investigation is also conducted on a stream of underground tunnel image frames, using the XBOX Kinect 3D sensors. The Kinect sensors produce streams of red, green and blue (RGB) and depth images of 640 x 480 resolution at 30 frames per second. Integrating the depth information to drivability gives a strong cue to the analysis, which detects 3D results augmenting drivable and non-drivable regions in 2D. The results of the 2D and 3D experiment with different terrains, mines and tunnels, together with the qualitative and quantitative evaluation, reveal that a good drivable region can be detected in dynamic underground terrains.

Numerical Investigation of the Thermal Separation in a Vortex Tube

This work has been carried out in order to provide an understanding of the physical behaviors of the flow variation of pressure and temperature in a vortex tube. A computational fluid dynamics model is used to predict the flow fields and the associated temperature separation within a Ranque–Hilsch vortex tube. The CFD model is a steady axisymmetric model (with swirl) that utilizes the standard k-ε turbulence model. The second–order numerical schemes, was used to carry out all the computations. Vortex tube with a circumferential inlet stream and an axial (cold) outlet stream and a circumferential (hot) outlet stream was considered. Performance curves (temperature separation versus cold outlet mass fraction) were obtained for a specific vortex tube with a given inlet mass flow rate. Simulations have been carried out for varying amounts of cold outlet mass flow rates. The model results have a good agreement with experimental data.

A Proposed Information Extraction Technique in Engineering Drawing for Reuse Design

The extensive number of engineering drawing will be referred for planning process and the changes will produce a good engineering design to meet the demand in producing a new model. The advantage in reuse of engineering designs is to allow continuous product development to further improve the quality of product development, thus reduce the development costs. However, to retrieve the existing engineering drawing, it is time consuming, a complex process and are expose to errors. Engineering drawing file searching system will be proposed to solve this problem. It is essential for engineer and designer to have some sort of medium to enable them to search for drawing in the most effective way. This paper lays out the proposed research project under the area of information extraction in engineering drawing.

A Failure Analysis Tool for HDD Analysis

The study of piezoelectric material in the past was in T-Domain form; however, no one has studied piezoelectric material in the S-Domain form. This paper will present the piezoelectric material in the transfer function or S-Domain model. S-Domain is a well known mathematical model, used for analyzing the stability of the material and determining the stability limits. By using S-Domain in testing stability of piezoelectric material, it will provide a new tool for the scientific world to study this material in various forms.

Prototype for Enhancing Information Security Awareness in Industry

Human-related information security breaches within organizations are primarily caused by employees who have not been made aware of the importance of protecting the information they work with. Information security awareness is accordingly attracting more attention from industry, because stakeholders are held accountable for the information with which they work. The authors developed an Information Security Retrieval and Awareness model – entitled “ISRA" – that is tailored specifically towards enhancing information security awareness in industry amongst all users of information, to address shortcomings in existing information security awareness models. This paper is principally aimed at expounding a prototype for the ISRA model to highlight the advantages of utilizing the model. The prototype will focus on the non-technical, humanrelated information security issues in industry. The prototype will ensure that all stakeholders in an organization are part of an information security awareness process, and that these stakeholders are able to retrieve specific information related to information security issues relevant to their job category, preventing them from being overburdened with redundant information.

Network State Classification based on the Statistical properties of RTT for an Adaptive Multi-State Proactive Transport Protocol for Satellite based Networks

This paper attempts to establish the fact that Multi State Network Classification is essential for performance enhancement of Transport protocols over Satellite based Networks. A model to classify Multi State network condition taking into consideration both congestion and channel error is evolved. In order to arrive at such a model an analysis of the impact of congestion and channel error on RTT values has been carried out using ns2. The analysis results are also reported in the paper. The inference drawn from this analysis is used to develop a novel statistical RTT based model for multi state network classification. An Adaptive Multi State Proactive Transport Protocol consisting of Proactive Slow Start, State based Error Recovery, Timeout Action and Proactive Reduction is proposed which uses the multi state network state classification model. This paper also confirms through detail simulation and analysis that a prior knowledge about the overall characteristics of the network helps in enhancing the performance of the protocol over satellite channel which is significantly affected due to channel noise and congestion. The necessary augmentation of ns2 simulator is done for simulating the multi state network classification logic. This simulation has been used in detail evaluation of the protocol under varied levels of congestion and channel noise. The performance enhancement of this protocol with reference to established protocols namely TCP SACK and Vegas has been discussed. The results as discussed in this paper clearly reveal that the proposed protocol always outperforms its peers and show a significant improvement in very high error conditions as envisaged in the design of the protocol.

Modeling of Session Initiation Protocol Invite Transaction using Colored Petri Nets

Wireless mobile communications have experienced the phenomenal growth through last decades. The advances in wireless mobile technologies have brought about a demand for high quality multimedia applications and services. For such applications and services to work, signaling protocol is required for establishing, maintaining and tearing down multimedia sessions. The Session Initiation Protocol (SIP) is an application layer signaling protocols, based on request/response transaction model. This paper considers SIP INVITE transaction over an unreliable medium, since it has been recently modified in Request for Comments (RFC) 6026. In order to help in assuring that the functional correctness of this modification is achieved, the SIP INVITE transaction is modeled and analyzed using Colored Petri Nets (CPNs). Based on the model analysis, it is concluded that the SIP INVITE transaction is free of livelocks and dead codes, and in the same time it has both desirable and undesirable deadlocks. Therefore, SIP INVITE transaction should be subjected for additional updates in order to eliminate undesirable deadlocks. In order to reduce the cost of implementation and maintenance of SIP, additional remodeling of the SIP INVITE transaction is recommended.

Research on IBR-Driven Distributed Collaborative Visualization System

Image-based Rendering(IBR) techniques recently reached in broad fields which leads to a critical challenge to build up IBR-Driven visualization platform where meets requirement of high performance, large bounds of distributed visualization resource aggregation and concentration, multiple operators deploying and CSCW design employing. This paper presents an unique IBR-based visualization dataflow model refer to specific characters of IBR techniques and then discusses prominent feature of IBR-Driven distributed collaborative visualization (DCV) system before finally proposing an novel prototype. The prototype provides a well-defined three level modules especially work as Central Visualization Server, Local Proxy Server and Visualization Aid Environment, by which data and control for collaboration move through them followed the previous dataflow model. With aid of this triple hierarchy architecture of that, IBR oriented application construction turns to be easy. The employed augmented collaboration strategy not only achieve convenient multiple users synchronous control and stable processing management, but also is extendable and scalable.

Optimization of Petroleum Refinery Configuration Design with Logic Propositions

This work concerns the topological optimization problem for determining the optimal petroleum refinery configuration. We are interested in further investigating and hopefully advancing the existing optimization approaches and strategies employing logic propositions to conceptual process synthesis problems. In particular, we seek to contribute to this increasingly exciting area of chemical process modeling by addressing the following potentially important issues: (a) how the formulation of design specifications in a mixed-logical-and-integer optimization model can be employed in a synthesis problem to enrich the problem representation by incorporating past design experience, engineering knowledge, and heuristics; and (b) how structural specifications on the interconnectivity relationships by space (states) and by function (tasks) in a superstructure should be properly formulated within a mixed-integer linear programming (MILP) model. The proposed modeling technique is illustrated on a case study involving the alternative processing routes of naphtha, in which significant improvement in the solution quality is obtained.

Interface Location in Single Phase Stirred Tanks

In this work, study the location of interface in a stirred vessel with Rushton impeller by computational fluid dynamic was presented. To modeling rotating the impeller, sliding mesh (SM) technique was used and standard k-ε model was selected for turbulence closure. Mean tangential, radial and axial velocities and also turbulent kinetic energy (k) and turbulent dissipation rate (ε) in various points of tank was investigated. Results show sensitivity of system to location of interface and radius of 7 to 10cm for interface in the vessel with existence characteristics cause to increase the accuracy of simulation.

On Two Control Approaches for The Output Voltage Regulation of a Boost Converter

This paper deals with the comparison between two proposed control strategies for a DC-DC boost converter. The first control is a classical Sliding Mode Control (SMC) and the second one is a distance based Fuzzy Sliding Mode Control (FSMC). The SMC is an analytical control approach based on the boost mathematical model. However, the FSMC is a non-conventional control approach which does not need the controlled system mathematical model. It needs only the measures of the output voltage to perform the control signal. The obtained simulation results show that the two proposed control methods are robust for the case of load resistance and the input voltage variations. However, the proposed FSMC gives a better step voltage response than the one obtained by the SMC.

Harmonic Analysis and Performance Improvement of a Wind Energy Conversions System with Double Output Induction Generator

Wind turbines with double output induction generators can operate at variable speed permitting conversion efficiency maximization over a wide range of wind velocities. This paper presents the performance analysis of a wind driven double output induction generator (DOIG) operating at varying shafts speed. A periodic transient state analysis of DOIG equipped with two converters is carried out using a hybrid induction machine model. This paper simulates the harmonic content of waveforms in various points of drive at different speeds, based on the hybrid model (dqabc). Then the sinusoidal and trapezoidal pulse-width–modulation control techniques are used in order to improve the power factor of the machine and to weaken the injected low order harmonics to the supply. Based on the frequency spectrum, total harmonics distortion, distortion factor and power factor. Finally advantages of sinusoidal and trapezoidal pulse width modulation techniques are compared.

Formosa3: A Cloud-Enabled HPC Cluster in NCHC

This paper proposes a new approach to offer a private cloud service in HPC clusters. In particular, our approach relies on automatically scheduling users- customized environment request as a normal job in batch system. After finishing virtualization request jobs, those guest operating systems will dismiss so that compute nodes will be released again for computing. We present initial work on the innovative integration of HPC batch system and virtualization tools that aims at coexistence such that they suffice for meeting the minimizing interference required by a traditional HPC cluster. Given the design of initial infrastructure, the proposed effort has the potential to positively impact on synergy model. The results from the experiment concluded that goal for provisioning customized cluster environment indeed can be fulfilled by using virtual machines, and efficiency can be improved with proper setup and arrangements.

Improving the Performance of Proxy Server by Using Data Mining Technique

Currently, web usage make a huge data from a lot of user attention. In general, proxy server is a system to support web usage from user and can manage system by using hit rates. This research tries to improve hit rates in proxy system by applying data mining technique. The data set are collected from proxy servers in the university and are investigated relationship based on several features. The model is used to predict the future access websites. Association rule technique is applied to get the relation among Date, Time, Main Group web, Sub Group web, and Domain name for created model. The results showed that this technique can predict web content for the next day, moreover the future accesses of websites increased from 38.15% to 85.57 %. This model can predict web page access which tends to increase the efficient of proxy servers as a result. In additional, the performance of internet access will be improved and help to reduce traffic in networks.