Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach

Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained. 

A Mixed Approach to Assess Information System Risk, Operational Risk, and Congolese Microfinance Institutions Performance

Well organized digitalization and information systems have been selected as relevant measures to mitigate operational risks within organizations. Unfortunately, information system comes with new threats that can cause severe damage and quick organization lockout. This study aims to measure perceived information system risks and their effects on operational risks within the microfinance institution in D.R. Congo. Also, the factors influencing the operational risk are to be identified, and the link between operational risk with other risks and performance is to be assessed. The study proposes a research model drawn on the combination of Resources-Based-View, dynamic capabilities, the agency theory, the Information System Security Model, and social theories of risk. Therefore, we suggest adopting a mixed methods research with the sole aim of increasing the literature that already exists on perceived operational risk assessment and its link with other risk and performance, with a focus on information system risks.

Sustainable Balanced Scorecard for Kaizen Evaluation: Comparative Study between Egypt and Japan

Continuous improvement activities are becoming a key organizational success factor; those improvement activities include but are not limited to kaizen, six sigma, lean production, and continuous improvement projects. Kaizen is a Japanese philosophy of continuous improvement by making small incremental changes to improve an organization’s performance, reduce costs, reduce delay time, reduce waste in production, etc. This research aims at proposing a measuring system for kaizen activities from a sustainable balanced scorecard perspective. A survey was developed and disseminated among kaizen experts in both Egypt and Japan with the purpose of allocating key performance indicators for both kaizen process (critical success factors) and result (kaizen benefits) into the five sustainable balanced scorecard perspectives. This research contributes to the extant literature by presenting a kaizen measurement of both kaizen process and results that will illuminate the benefits of using kaizen. Also, the presented measurement can help in the sustainability of kaizen implementation across various sectors and industries. Thus, grasping the full benefits of kaizen implementation will contribute to the spread of kaizen understanding and practice. Also, this research provides insights on the social and cultural differences that would influence the kaizen success. Determining the combination of the proper kaizen measures could be used by any industry, whether service or manufacturing for better kaizen activities measurement. The comparison between Japanese implementation of kaizen, as the pioneers of continuous improvement, and Egyptian implementation will help recommending better practices of kaizen in Egypt and contributing to the 2030 sustainable development goals. The study results reveal that there is no significant difference in allocating kaizen benefits between Egypt and Japan. However, with regard to the critical success factors some differences appeared reflecting the social differences and understanding between both countries, a single integrated measurement was reached between the Egyptian and Japanese allocation highlighting the Japanese experts’ opinion as the ultimate criterion for selection.

An Approach to Capture, Evaluate and Handle Complexity of Engineering Change Occurrences in New Product Development

This paper represents the conception that complex problems do not necessary need similar complex solutions in order to cope with the complexity. Furthermore, a simple solution based on established methods can provide a sufficient way dealing with the complexity. To verify this conception, the presented paper focuses on the field of change management as a part of new product development process in automotive sector. In the field of complexity management, dealing with increasing complexity is essential, while, only non-flexible rigid processes that are not designed to handle complexity are available. The basic methodology of this paper can be divided in four main sections: 1) analyzing the complexity of the change management, 2) literature review in order to identify potential solutions and methods, 3) capturing and implementing expertise of experts from change management filed of an automobile manufacturing company and 4) systematical comparison of the identified methods from literature and connecting these with defined requirements of the complexity of the change management in order to develop a solution. As a practical outcome, this paper provides a method to capture the complexity of engineering changes (EC) and includes it within the EC evaluation process, following case-related process guidance to cope with the complexity. Furthermore, this approach supports the conception that dealing with complexity is possible while utilizing rather simple and established methods by combining them in to a powerful tool.

User’s Susceptibility Factors to Malware Attacks: A Systemic Literature Review

Users’ susceptibility to malware attacks have been noticed in the past few years. Investigating the factors that make a user vulnerable to those attacks is critical because they can be utilized to set up proactive strategies such as awareness and education to mitigate the impacts of those attacks. Demographic, behavioral, and cultural vulnerabilities are the main factors that make users susceptible to malware attacks. It is challenging, however, to draw more general conclusions based on those factors due to the varieties in the type of users and different types of malware. Therefore, we conducted a systematic literature review (SLR) of the existing research for user susceptibility factors to malware attacks. The results showed that all demographic factors are consistently associated with malware infection regardless of the users' type except for age and gender. Besides, the association of culture and personality factors with malware infection is consistent in most of the selected studies and for all types of users. Moreover, malware infection varies based on age, geographic location, and host types. We propose that future studies should carefully take into consideration the type of users because different users may be exposed to different threats or targeted based on their user domains’ characteristics. Additionally, as different types of malware use different tactics to trick users, taking the malware types into consideration is important.

Supplementary Cementitious Materials as Sustainable Partial Replacement for Cement in the Building Industry

Cement is the most extensively used construction material due to its strength and versatility of use. However, the production of Portland cement has become unsustainable because of high energy usage, reduction of natural non-renewable resources and emissions of greenhouse gases. Production of cement contributes to anthropogenic greenhouse gases emissions annually. The growing concerns for the environment resulting from this constant and excessive use of cement has therefore raised the need for more green materials and technology. The use of supplementary cementitious materials (SCMs) is considered as one of the many alternatives suited to address this issue and serve as a sustainable partial replacement for cement in construction. This paper will examine the reuse of these waste materials to partially replace Portland cement. It provides a critical review of literature analysing various supplementary cementitious materials which are applicable in the building industry as either partial replacement for cement or aggregates. These materials have been grouped based on source into industrial wastes, domestic/general wastes, and agricultural wastes. The reuse of these waste materials could potentially reduce the negative effects of cement production and reduce landfills which constitute an environmental nuisance. This paper seeks to inform building industry professionals and researchers in the field on the applicability of these waste materials in construction.

Review of Innovation Management Frameworks and Assessment Tools

Research studies are highly fragmented when an Innovation Management Framework is being discussed. With the aim to identify an Innovation Management Framework/Assessment Tool suitable for Small & Medium Enterprises (SMEs) in the service industry, this researcher critically reviewed existing innovation management frameworks and assessment models/tools and discovered a number of literature gaps. It is established that the existing literature lacks generally agreed innovation management dimensions, commonly accepted knowledge creation through empirical studies on innovation management in SMEs, effective innovation management performance measurements, suitable innovation management framework in SMEs, and studies on innovation management in the service industry, in particular in retail SMEs. As such, there is a dire need to develop an appropriate firm-level innovation management framework suitable for SMEs in the service industry for future research projects and further studies. In addition, this researcher also discussed the significance of establishing such an innovation management framework.

A Comparative Analysis of Multiple Criteria Decision Making Analysis Methods for Strategic, Tactical, and Operational Decisions in Military Fighter Aircraft Selection

This paper considers a comparative analysis of multiple criteria decision making analysis methods for strategic, tactical, and operational decisions in military fighter aircraft selection for the air force fleet planning. The evaluation criteria governing the decision analysis process are determined from the literature for the three existing military combat aircraft. Military fighter aircraft selection problem is structured using "preference analysis for reference ideal solution (PARIS)” approach in multiple criteria decision analysis (MCDMA). Systematic comparisons were made with existing MCDMA methods (PARIS, and TOPSIS) to verify the stability and accuracy of the results obtained. The proposed integrated MCDMA systematic approach is expected to address the issues encountered in the aircraft selection process. The comparative analysis results show that the proposed method is an effective and accurate tool that can help analysts make better strategic, tactical, and operational decisions.

Trainer Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS)

This article presents a multiple criteria evaluation for a trainer aircraft selection problem using "preference analysis for reference ideal solution (PARIS)” approach. The available relevant literature points to the use of multiple criteria decision making analysis (MCDMA) methods for the problem of trainer aircraft selection, which often involves conflicting multiple criteria. Therefore, this MCDMA study aims to propose a robust systematic integrated framework focusing on the trainer aircraft selection problem. For this purpose, an integrated preference analysis approach based the mean weight and entropy weight procedures with PARIS, and TOPSIS was used for a MCDMA compensating solution. In this study, six trainer aircraft alternatives were evaluated according to six technical decision criteria, and data were collected from the current relevant literature. As a result, the King Air C90GTi alternative was identified as the most suitable trainer aircraft alternative. In order to verify the stability and accuracy of the results obtained, comparisons were made with existing MCDMA methods during the sensitivity and validity analysis process.The results of the application were further validated by applying the comparative analysis-based PARIS, and TOPSIS method. The proposed integrated MCDMA systematic structure is also expected to address the issues encountered in the aircraft selection process. Finally, the analysis results obtained show that the proposed MCDMA method is an effective and accurate tool that can help analysts make better decisions.

Aircraft Selection Process Using Preference Analysis for Reference Ideal Solution (PARIS)

Multiple criteria decision making analysis (MCDMA) methods are applied to many real - life problems in different fields of engineering science and technology. The "preference analysis for reference ideal solution (PARIS)" method is proposed for an efficient MCDMA evaluation of decision problems. The multiple criteria aircraft evaluation approach is based on the integrated the mean weight, entropy weight, PARIS, and TOPSIS method, which eliminates the subjective importance weight assignment process. The evaluation criteria were identified from an extensive literature review of aircraft selection process. The aim of this study is to propose an efficient methodology for handling the aircraft selection process in which the proposed method solves effectively the MCDMA problem. A numerical example is presented to demonstrate the applicability and validity of the proposed MCDMA approach. 

Fighter Aircraft Selection Using Technique for Order Preference by Similarity to Ideal Solution with Multiple Criteria Decision Making Analysis

This paper presents a multiple criteria decision making analysis technique for selecting fighter aircraft for the national air force. The selection of military aircraft is a process consisting of contradictory goals and objectives. When a modern air force needs to choose fighter aircraft to upgrade existing fleets, a multiple criteria decision making analysis and scenario planning for defense acquisition has been put forward. The selection of fighter aircraft for the air defense force is a strategic decision making process, since the purchase or lease of fighter jets, maintenance and operating costs and having a fleet is the biggest cost for the air force. Multiple criteria decision making analysis methods are effectively applied to facilitate decision making from various available options. The selection criteria were determined using the literature on the problem of fighter aircraft selection. The selection of fighter aircraft to be purchased for the air defense forces is handled using a multiple criteria decision making analysis technique that also determines a suitable methodological approach for the defense procurement and fleet upgrade planning process. The aim of this study is to originate an approach to evaluate fighter aircraft alternatives, Su-35, F-35, and TF-X (MMU), based on technique for order preference by similarity to ideal solution (TOPSIS).

Engineering Education for Sustainable Development in China: Perceptions Bias between Experienced Engineers and Engineering Students

Nowadays sustainable development has increasingly become an important research topic of engineering education all over the world. Engineering Education for Sustainable Development (EESD) highlighted the importance of addressing sustainable development in engineering practice. However, whether and how the professional engineering learning and experience affect those perceptions is an interesting research topic especially in Chinese context. Our study fills this gap by investigating perceptions bias of EESD among first-grade engineering students, fourth-grade engineering students and experienced engineers using a triple-dimensional model. Our goal is to find the effect of engineering learning and experience on sustainable development and make these learning and experiences more accessible for students and engineers in school and workplace context. The data (n = 138) came from a Likert questionnaire based on the triple-dimensional model of EESD adopted from literature reviews and the data contain 48 first-grade students, 56 fourth-grade students and 34 engineers with rich working experience from Environmental Engineering, Energy Engineering, Chemical Engineering and Civil Engineering in or graduated from Zhejiang University, China. One-way ANOVA analysis was used to find the difference in different dimensions among the three groups. The statistical results show that both engineering students and engineers have a well understanding of sustainable development in ecology dimension of EESD while there are significant differences among three groups as to the socio-economy and value rationality dimensions of EESD. The findings provide empirical evidence that both engineering learning and professional engineering experience are helpful to cultivate the cognition and perception of sustainable development in engineering education. The results of this work indicate that more practical content should be added to students’ engineering education while more theoretical content should be added to engineers’ training in order to promote the engineering students’ and engineers’ perceptions of sustainable development. In addition, as to the design of engineering courses and professional practice system for sustainable development, we should not only pay attention to the ecological aspects, but also emphasize the coordination of ecological, socio-economic and human-centered sustainable development (e.g., engineer's ethical responsibility).

Cybersecurity for Digital Twins in the Built Environment: Research Landscape, Industry Attitudes and Future Direction

Technological advances in the construction sector are helping to make smart cities a reality by means of Cyber-Physical Systems (CPS). CPS integrate information and the physical world through the use of Information Communication Technologies (ICT). An increasingly common goal in the built environment is to integrate Building Information Models (BIM) with Internet of Things (IoT) and sensor technologies using CPS. Future advances could see the adoption of digital twins, creating new opportunities for CPS using monitoring, simulation and optimisation technologies. However, researchers often fail to fully consider the security implications. To date, it is not widely possible to assimilate BIM data and cybersecurity concepts and, therefore, security has thus far been overlooked. This paper reviews the empirical literature concerning IoT applications in the built environment and discusses real-world applications of the IoT intended to enhance construction practices, people’s lives and bolster cybersecurity. Specifically, this research addresses two research questions: (a) How suitable are the current IoT and CPS security stacks to address the cybersecurity threats facing digital twins in the context of smart buildings and districts? and (b) What are the current obstacles to tackling cybersecurity threats to the built environment CPS? To answer these questions, this paper reviews the current state-of-the-art research concerning digital twins in the built environment, the IoT, BIM, urban cities and cybersecurity. The results of the findings of this study confirmed the importance of using digital twins in both IoT and BIM. Also, eight reference zones across Europe have gained special recognition for their contributions to the advancement of IoT science. Therefore, this paper evaluates the use of digital twins in CPS to arrive at recommendations for expanding BIM specifications to facilitate IoT compliance, bolster cybersecurity and integrate digital twin and city standards in the smart cities of the future.

Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

One area of special importance for the surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fine height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling the inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fine height has a greater impact on performance factors than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer, and pressure drops up to 21% and 56% compared to a 2D one, respectfully.

Digital Transformation in Developing Countries: A Study into BIM Adoption in Thai Design and Engineering SMEs

Building Information Modelling (BIM) is the major technological trend among built environment organisations. Digitalising businesses and operations, BIM brings forth a digital transformation in any built environment industry. The adoption of BIM presents challenges for organisations, especially Small- and Medium-sized Enterprises (SMEs). The main problem for built environment SMEs is the lack of project actors with adequate BIM competences. The research highlights learning in projects as the key and explores into the learning of BIM in projects of designers and engineers within Thai design and engineering SMEs. The study uncovers three impeding attributes which are: a) lack of English proficiency; b) unfamiliarity with digital technologies; and c) absence of public standards. This research expands on the literature of BIM competences and adoption.

Evaluation of Gingival Hyperplasia Caused by Medications

Purpose: Drug gingival hyperplasia is an uncommon pathology encountered during routine work in dental units. The purpose of this paper is to present the clinical appearance of gingival hyperplasia caused by medications. There are already three classes of medications that cause hyperplasia and based on data from the literature, the clinical cases encountered and included in this study have been compared. Materials and Methods: The study was conducted in a total of 311 patients, out of which 182 patients were included in our study, meeting the inclusion criteria. After each patient's history was recorded and it was found that patients were in their knowledge of chronic illness, undergoing treatment of gingivitis hypertrophic drugs was performed with a clinical examination of oral cavity and assessment by vertical and horizontal evaluation according to the periodontal indexes. Results: Of the data collected during the study, it was observed that 97% of patients with gingival hyperplasia are treated with nifedipine. 84% of patients treated with selected medicines and gingival hyperplasia in the oral cavity has been exposed at time period for more than 1 year and 1 month. According to the GOI, in the first rank of this index are about 21% of patients, in the second rank are 52%, in the third rank are 24% and in the fourth grade are 3%. According to the horizontal growth index of gingival hyperplasia, grade 1 included about 61% of patients and grade 2 included about 39% of patients with gingival hyperplasia. Bacterial index divides patients by degrees: grading 0 - 8.2%, grading 1 - 32.4%, grading 2 - 14% and grading 3 - 45.1%. Conclusions: The highest percentage of gingival hyperplasia caused by drugs is due to dosing of nifedipine for a duration of dosing and application for systemic healing for more than 1 year.

Real-Time Land Use and Land Information System in Homagama Divisional Secretariat Division

Lands are valuable & limited resource which constantly changes with the growth of the population. An efficient and good land management system is essential to avoid conflicts associated with lands. This paper aims to design the prototype model of a Mobile GIS Land use and Land Information System in real-time. Homagama Divisional Secretariat Division situated in the western province of Sri Lanka was selected as the study area. The prototype model was developed after reviewing related literature. The methodology was consisted of designing and modeling the prototype model into an application running on a mobile platform. The system architecture mainly consists of a Google mapping app for real-time updates with firebase support tools. Thereby, the method of implementation consists of front-end and back-end components. Software tools used in designing applications are Android Studio with JAVA based on GeoJSON File structure. Android Studio with JAVA in GeoJSON File Synchronize to Firebase was found to be the perfect mobile solution for continuously updating Land use and Land Information System (LIS) in real-time in the present scenario. The mobile-based land use and LIS developed in this study are multiple user applications catering to different hierarchy levels such as basic users, supervisory managers, and database administrators. The benefits of this mobile mapping application will help public sector field officers with non-GIS expertise to overcome the land use planning challenges with land use updated in real-time.

A Review on Process Parameters of Ti/Al Dissimilar Joint Using Laser Beam Welding

The use of laser beam welding for joining titanium and aluminum offers more advantages compared with conventional joining processes. Dissimilar metal combination is very much needed for aircraft structural industries and research activities. The quality of a weld joint is directly influenced by the welding input parameters. The common problem that is faced by the manufactures is the control of the process parameters to obtain a good weld joint with minimal detrimental. To overcome this issue, various parameters can be preferred to obtain quality of weld joint. In this present study an overall literature review on processing parameters such as offset distance, welding speed, laser power, shielding gas and filler metals are discussed with the effects on quality weldment. Additionally, mechanical properties of welds joint are discussed. The aim of the report is to review the recent progress in the welding of dissimilar titanium (Ti) and aluminum (Al) alloys to provide a basis for follow up research.

Users’ Information Disclosure Determinants in Social Networking Sites: A Systematic Literature Review

The privacy paradox describes a phenomenon whereby there is no connection between stated privacy concerns and privacy behaviours. We need to understand the underlying reasons for this paradox if we are to help users to preserve their privacy more effectively. In particular, the Social Networking System (SNS) domain offers a rich area of investigation due to the risks of unwise information disclosure decisions. Our study thus aims to untangle the complicated nature and underlying mechanisms of online privacy-related decisions in SNSs. In this paper, we report on the findings of a Systematic Literature Review (SLR) that revealed a number of factors that are likely to influence online privacy decisions. Our deductive analysis approach was informed by Communicative Privacy Management (CPM) theory. We uncovered a lack of clarity around privacy attitudes and their link to behaviours, which makes it challenging to design privacy-protecting SNS platforms and to craft legislation to ensure that users’ privacy is preserved.

Urban Life on the Go: Urban Transformation of Public Space

Urban design aims to provide a stage for public life that, when once brought to life, is right away subject to subtle but continuous transformation. This paper explores such transformations and searches for ways how public life can be reinforced in the case of a housing settlement for the displaced in Nicosia, Cyprus. First, a sound basis of theoretical knowledge is established through literature review, notably the theory of the Production of Space by Henri Lefebvre, exploring its potential and defining key criteria for the following empirical analysis. The analysis is pinpointing the differences between spatial practice, representation of space and spaces of representation as well as their interaction, alliance, or even conflict. In doing so uncertainties, chances and challenges are unraveled that will be consequently linked to practice and action and lead to the formulation of a design strategy. A strategy, though, that does not long for achieving an absolute, finite certainty but understands the three dimensions of space formulated by Lefebvre as equal and space as continuously produced, hence, unfinished.