Abstract: Thyristor based firing angle controlled voltage regulators are extensively used for speed control of single phase induction motors. This leads to power saving but the applied voltage and current waveforms become non-sinusoidal. These non-sinusoidal waveforms increase voltage and thermal stresses which result into accelerated insulation aging, thus reducing the motor life. Life models that allow predicting the capability of insulation under such multi-stress situations tend to be very complex and somewhat impractical. This paper presents the fuzzy logic application to investigate the synergic effect of voltage and thermal stresses on intrinsic aging of induction motor insulation. A fuzzy expert system is developed to estimate the life of induction motor insulation under multiple stresses. Three insulation degradation parameters, viz. peak modification factor, wave shape modification factor and thermal loss are experimentally obtained for different firing angles. Fuzzy expert system consists of fuzzyfication of the insulation degradation parameters, algorithms based on inverse power law to estimate the life and defuzzyficaton process to output the life. An electro-thermal life model is developed from the results of fuzzy expert system. This fuzzy logic based electro-thermal life model can be used for life estimation of induction motors operated with non-sinusoidal voltage and current waveforms.
Abstract: At present, the tendency to implement the conditionbased
maintenance (CBM), which allows the optimization of the
expenses for equipment monitoring, is more and more evident; also,
the transformer substations with remote monitoring are increasingly
used. This paper reviews all the advantages of the on-line monitoring
and presents an equipment for on-line monitoring of bushings, which
is the own contribution of specialists who are the authors of this
paper. The paper presents a study of the temperature field, using the
finite element method. For carrying out this study, the 3D modelling
of the above mentioned bushing was performed. The analysis study is
done taking into account the extreme thermal stresses, focusing at the
level of the first cooling wing section of the ceramic insulator. This
fact enables to justify the tanδ variation in time, depending on the
transformer loading and the environmental conditions. With a view
to reducing the variation of dielectric losses in bushing insulation, the
use of ferrofuids instead of mineral oils is proposed.