An Efficient MIPv6 Return Routability Scheme Based on Geometric Computing

IETF defines mobility support in IPv6, i.e. MIPv6, to allow nodes to remain reachable while moving around in the IPv6 internet. When a node moves and visits a foreign network, it is still reachable through the indirect packet forwarding from its home network. This triangular routing feature provides node mobility but increases the communication latency between nodes. This deficiency can be overcome by using a Binding Update (BU) scheme, which let nodes keep up-to-date IP addresses and communicate with each other through direct IP routing. To further protect the security of BU, a Return Routability (RR) procedure was developed. However, it has been found that RR procedure is vulnerable to many attacks. In this paper, we will propose a lightweight RR procedure based on geometric computing. In consideration of the inherent limitation of computing resources in mobile node, the proposed scheme is developed to minimize the cost of computations and to eliminate the overhead of state maintenance during binding updates. Compared with other CGA-based BU schemes, our scheme is more efficient and doesn-t need nonce tables in nodes.

Unsupervised Clustering Methods for Identifying Rare Events in Anomaly Detection

It is important problems to increase the detection rates and reduce false positive rates in Intrusion Detection System (IDS). Although preventative techniques such as access control and authentication attempt to prevent intruders, these can fail, and as a second line of defence, intrusion detection has been introduced. Rare events are events that occur very infrequently, detection of rare events is a common problem in many domains. In this paper we propose an intrusion detection method that combines Rough set and Fuzzy Clustering. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy c-means clustering allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining-(KDDCup 1999) Dataset show that the method is efficient and practical for intrusion detection systems.

New Curriculum Approach in Teaching Network Security Subjects for ICT Courses in Malaysia

This paper discusses a curriculum approach that will give emphasis on practical portions of teaching network security subjects in information and communication technology courses. As we are well aware, the need to use a practice and application oriented approach in education is paramount. Research on active learning and cooperative groups have shown that students grasps more and have more tendency towards obtaining and realizing soft skills like leadership, communication and team work as opposed to the more traditional theory and exam based teaching and learning. While this teaching and learning paradigm is relatively new in Malaysia, it has been practiced widely in the West. This paper examines a certain approach whereby students learning wireless security are divided into and work in small and manageable groups where there will be 2 teams which consist of black hat and white hat teams. The former will try to find and expose vulnerabilities in a wireless network while the latter will try their best to prevent such attacks on their wireless networks using hardware, software, design and enforcement of security policy and etc. This paper will try to show that the approach taken plus the use of relevant and up to date software and hardware and with suitable environment setting will hopefully expose students to a more fruitful outcome in terms of understanding of concepts, theories and their motivation to learn.

A New Group Key Management Protocol for Wireless Ad-Hoc Networks

Ad hoc networks are characterized by multi-hop wireless connectivity and frequently changing network topology. Forming security association among a group of nodes in ad-hoc networks is more challenging than in conventional networks due to the lack of central authority, i.e. fixed infrastructure. With that view in mind, group key management plays an important building block of any secure group communication. The main contribution of this paper is a low complexity key management scheme that is suitable for fully self-organized ad-hoc networks. The protocol is also password authenticated, making it resilient against active attacks. Unlike other existing key agreement protocols, ours make no assumption about the structure of the underlying wireless network, making it suitable for “truly ad-hoc" networks. Finally, we will analyze our protocol to show the computation and communication burden on individual nodes for key establishment.

Distortion Estimation in Digital Image Watermarking using Genetic Programming

This paper introduces a technique of distortion estimation in image watermarking using Genetic Programming (GP). The distortion is estimated by considering the problem of obtaining a distorted watermarked signal from the original watermarked signal as a function regression problem. This function regression problem is solved using GP, where the original watermarked signal is considered as an independent variable. GP-based distortion estimation scheme is checked for Gaussian attack and Jpeg compression attack. We have used Gaussian attacks of different strengths by changing the standard deviation. JPEG compression attack is also varied by adding various distortions. Experimental results demonstrate that the proposed technique is able to detect the watermark even in the case of strong distortions and is more robust against attacks.

Inter-frame Collusion Attack in SS-N Video Watermarking System

Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.

Key Issues and Challenges of Intrusion Detection and Prevention System: Developing Proactive Protection in Wireless Network Environment

Nowadays wireless technology plays an important role in public and personal communication. However, the growth of wireless networking has confused the traditional boundaries between trusted and untrusted networks. Wireless networks are subject to a variety of threats and attacks at present. An attacker has the ability to listen to all network traffic which becoming a potential intrusion. Intrusion of any kind may lead to a chaotic condition. In addition, improperly configured access points also contribute the risk to wireless network. To overcome this issue, a security solution that includes an intrusion detection and prevention system need to be implemented. In this paper, first the security drawbacks of wireless network will be analyzed then investigate the characteristics and also the limitations on current wireless intrusion detection and prevention system. Finally, the requirement of next wireless intrusion prevention system will be identified including some key issues which should be focused on in the future to overcomes those limitations.

An Improved Method to Watermark Images Sensitive to Blocking Artifacts

A new digital watermarking technique for images that are sensitive to blocking artifacts is presented. Experimental results show that the proposed MDCT based approach produces highly imperceptible watermarked images and is robust to attacks such as compression, noise, filtering and geometric transformations. The proposed MDCT watermarking technique is applied to fingerprints for ensuring security. The face image and demographic text data of an individual are used as multiple watermarks. An AFIS system was used to quantitatively evaluate the matching performance of the MDCT-based watermarked fingerprint. The high fingerprint matching scores show that the MDCT approach is resilient to blocking artifacts. The quality of the extracted face and extracted text images was computed using two human visual system metrics and the results show that the image quality was high.

Web Page Watermarking: XML files using Synonyms and Acronyms

Advent enhancements in the field of computing have increased massive use of web based electronic documents. Current Copyright protection laws are inadequate to prove the ownership for electronic documents and do not provide strong features against copying and manipulating information from the web. This has opened many channels for securing information and significant evolutions have been made in the area of information security. Digital Watermarking has developed into a very dynamic area of research and has addressed challenging issues for digital content. Watermarking can be visible (logos or signatures) and invisible (encoding and decoding). Many visible watermarking techniques have been studied for text documents but there are very few for web based text. XML files are used to trade information on the internet and contain important information. In this paper, two invisible watermarking techniques using Synonyms and Acronyms are proposed for XML files to prove the intellectual ownership and to achieve the security. Analysis is made for different attacks and amount of capacity to be embedded in the XML file is also noticed. A comparative analysis for capacity is also made for both methods. The system has been implemented using C# language and all tests are made practically to get the results.

Implementation of RC5 Block Cipher Algorithm for Image Cryptosystems

This paper examines the implementation of RC5 block cipher for digital images along with its detailed security analysis. A complete specification for the method of application of the RC5 block cipher to digital images is given. The security analysis of RC5 block cipher for digital images against entropy attack, bruteforce, statistical, and differential attacks is explored from strict cryptographic viewpoint. Experiments and results verify and prove that RC5 block cipher is highly secure for real-time image encryption from cryptographic viewpoint. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security of RC5 block cipher algorithm.

Design of an Authentication Protocol for Secure Electronic Seals

Electronic seal is an electronic device to check the authenticity and integrity of freight containers at the point of arrival. While RFID-based eSeals are gaining more acceptances and there are also some standardization processes for these devices, a recent research revealed that the current RFID-based eSeals are vulnerable to various attacks. In this paper, we provide a feasible solution to enhance the security of active RFID-based eSeals. Our approach is to use an authentication and key agreement protocol between eSeal and reader device, enabling data encryption and integrity check. Our protocol is based on the use of block cipher AES, which is reasonable since a block cipher can also be used for many other security purposes including data encryption and pseudo-random number generation. Our protocol is very simple, and it is applicable to low-end active RFID eSeals.

Environmental Sanitation and Health Risks in Tropical Urban Settings: Case Study of Household Refuse and Diarrhea in Yaoundé-Cameroon

Health problems linked to urban growth are current major concerns of developing countries. In 2002 and 2005, an interdisciplinary program “Populations et Espaces ├á Risques SANitaires" (PERSAN) was set up under the patronage of the Development and Research Institute. Centered on health in Cameroon-s urban environment, the program mainly sought to (i) identify diarrhoea risk factors in Yaoundé, (ii) to measure their prevalence and apprehend their spatial distribution. The crosssectional epidemiological study that was carried out revealed a diarrheic prevalence of 14.4% (437 cases of diarrhoea on the 3,034 children examined). Also, among risk factors studied, household refuse management methods used by city dwellers were statistically associated to these diarrhoeas. Moreover, it happened that levels of diarrhoeal attacks varied consistently from one neighbourhood to another because of the discrepancy urbanization process of the Yaoundé metropolis.

Mechanized Proof of Resistance of Denial of Service Attacks in Voting Protocol with ProVerif

Resistance of denial of service attacks is a key security requirement in voting protocols. Acquisti protocol plays an important role in development of internet voting protocols and claims its security without strong physical assumptions. In this study firstly Acquisti protocol is modeled in extended applied pi calculus, and then resistance of denial of service attacks is proved with ProVerif. The result is that it is not resistance of denial of service attacks because two denial of service attacks are found. Finally we give the method against the denial of service attacks.

RUPSec: An Extension on RUP for Developing Secure Systems - Requirements Discipline

The world is moving rapidly toward the deployment of information and communication systems. Nowadays, computing systems with their fast growth are found everywhere and one of the main challenges for these systems is increasing attacks and security threats against them. Thus, capturing, analyzing and verifying security requirements becomes a very important activity in development process of computing systems, specially in developing systems such as banking, military and e-business systems. For developing every system, a process model which includes a process, methods and tools is chosen. The Rational Unified Process (RUP) is one of the most popular and complete process models which is used by developers in recent years. This process model should be extended to be used in developing secure software systems. In this paper, the Requirement Discipline of RUP is extended to improve RUP for developing secure software systems. These proposed extensions are adding and integrating a number of Activities, Roles, and Artifacts to RUP in order to capture, document and model threats and security requirements of system. These extensions introduce a group of clear and stepwise activities to developers. By following these activities, developers assure that security requirements are captured and modeled. These models are used in design, implementation and test activitie

Effect of Turbulence Models on Simulated Iced Aircraft Airfoil

The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem.

Artificial Neural Network based Web Application Firewall for SQL Injection

In recent years with the rapid development of Internet and the Web, more and more web applications have been deployed in many fields and organizations such as finance, military, and government. Together with that, hackers have found more subtle ways to attack web applications. According to international statistics, SQL Injection is one of the most popular vulnerabilities of web applications. The consequences of this type of attacks are quite dangerous, such as sensitive information could be stolen or authentication systems might be by-passed. To mitigate the situation, several techniques have been adopted. In this research, a security solution is proposed using Artificial Neural Network to protect web applications against this type of attacks. The solution has been experimented on sample datasets and has given promising result. The solution has also been developed in a prototypic web application firewall called ANNbWAF.

An Artificial Intelligent Technique for Robust Digital Watermarking in Multiwavelet Domain

In this paper, an artificial intelligent technique for robust digital image watermarking in multiwavelet domain is proposed. The embedding technique is based on the quantization index modulation technique and the watermark extraction process does not require the original image. We have developed an optimization technique using the genetic algorithms to search for optimal quantization steps to improve the quality of watermarked image and robustness of the watermark. In addition, we construct a prediction model based on image moments and back propagation neural network to correct an attacked image geometrically before the watermark extraction process begins. The experimental results show that the proposed watermarking algorithm yields watermarked image with good imperceptibility and very robust watermark against various image processing attacks.

A New Design Partially Blind Signature Scheme Based on Two Hard Mathematical Problems

Recently, many existing partially blind signature scheme based on a single hard problem such as factoring, discrete logarithm, residuosity or elliptic curve discrete logarithm problems. However sooner or later these systems will become broken and vulnerable, if the factoring or discrete logarithms problems are cracked. This paper proposes a secured partially blind signature scheme based on factoring (FAC) problem and elliptic curve discrete logarithms (ECDL) problem. As the proposed scheme is focused on factoring and ECDLP hard problems, it has a solid structure and will totally leave the intruder bemused because it is very unlikely to solve the two hard problems simultaneously. In order to assess the security level of the proposed scheme a performance analysis has been conducted. Results have proved that the proposed scheme effectively deals with the partial blindness, randomization, unlinkability and unforgeability properties. Apart from this we have also investigated the computation cost of the proposed scheme. The new proposed scheme is robust and it is difficult for the malevolent attacks to break our scheme.

Security Analysis of Password Hardened Multimodal Biometric Fuzzy Vault

Biometric techniques are gaining importance for personal authentication and identification as compared to the traditional authentication methods. Biometric templates are vulnerable to variety of attacks due to their inherent nature. When a person-s biometric is compromised his identity is lost. In contrast to password, biometric is not revocable. Therefore, providing security to the stored biometric template is very crucial. Crypto biometric systems are authentication systems, which blends the idea of cryptography and biometrics. Fuzzy vault is a proven crypto biometric construct which is used to secure the biometric templates. However fuzzy vault suffer from certain limitations like nonrevocability, cross matching. Security of the fuzzy vault is affected by the non-uniform nature of the biometric data. Fuzzy vault when hardened with password overcomes these limitations. Password provides an additional layer of security and enhances user privacy. Retina has certain advantages over other biometric traits. Retinal scans are used in high-end security applications like access control to areas or rooms in military installations, power plants, and other high risk security areas. This work applies the idea of fuzzy vault for retinal biometric template. Multimodal biometric system performance is well compared to single modal biometric systems. The proposed multi modal biometric fuzzy vault includes combined feature points from retina and fingerprint. The combined vault is hardened with user password for achieving high level of security. The security of the combined vault is measured using min-entropy. The proposed password hardened multi biometric fuzzy vault is robust towards stored biometric template attacks.

Molecular Characteristics of Phosphoric Acid Treated Soils

The expansive nature of soils containing high amounts of clay minerals can be altered through chemical stabilization, resulting in a material suitable for construction purposes. The primary objective of this investigation was to study the changes induced in the molecular structure of phosphoric acid stabilized bentonite and lateritic soil using Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) spectroscopy. Based on the obtained data, it was found that a surface alteration mechanism was the main reason responsible for the improvement of treated soils. Furthermore, the results indicated that the Al present in the octahedral layer of clay minerals were more amenable to chemical attacks and also partly responsible for the formation of new products.