PM10 Concentration Emitted from Blasting and Crushing Processes of Limestone Mines in Saraburi Province, Thailand

This study aimed to investigate PM10 emitted from different limestone mines in Saraburi province, Thailand. The blasting and crushing were the main processes selected for PM10 sampling. PM10 was collected in two mines including, a limestone mine for cement manufacturing (mine A) and a limestone mine for construction (mine B). The IMPACT samplers were used to collect PM10. At blasting, the points aligning with the upwind and downwind direction were assigned for the sampling. The ranges of PM10 concentrations at mine A and B were 0.267-5.592 and 0.130-0.325 mg/m³, respectively, and the concentration at blasting from mine A was significantly higher than mine B (p < 0.05). During crushing at mine A, the PM10 concentration with the range of 1.153-3.716 and 0.085-1.724 mg/m³ at crusher and piles in respectively were observed whereas the PM10 concentration measured at four sampling points in mine B, including secondary crusher, tertiary crusher, screening point, and piles, were ranged 1.032-16.529, 10.957-74.057, 0.655-4.956, and 0.169-1.699 mg/m³, respectively. The emission of PM10 concentration at the crushing units was different in the ranges depending on types of machine, its operation, dust collection and control system, and environmental conditions.

Parametric Approach for Reserve Liability Estimate in Mortgage Insurance

Chain Ladder (CL) method, Expected Loss Ratio (ELR) method and Bornhuetter-Ferguson (BF) method, in addition to more complex transition-rate modeling, are commonly used actuarial reserving methods in general insurance. There is limited published research about their relative performance in the context of Mortgage Insurance (MI). In our experience, these traditional techniques pose unique challenges and do not provide stable claim estimates for medium to longer term liabilities. The relative strengths and weaknesses among various alternative approaches revolve around: stability in the recent loss development pattern, sufficiency and reliability of loss development data, and agreement/disagreement between reported losses to date and ultimate loss estimate. CL method results in volatile reserve estimates, especially for accident periods with little development experience. The ELR method breaks down especially when ultimate loss ratios are not stable and predictable. While the BF method provides a good tradeoff between the loss development approach (CL) and ELR, the approach generates claim development and ultimate reserves that are disconnected from the ever-to-date (ETD) development experience for some accident years that have more development experience. Further, BF is based on subjective a priori assumption. The fundamental shortcoming of these methods is their inability to model exogenous factors, like the economy, which impact various cohorts at the same chronological time but at staggered points along their life-time development. This paper proposes an alternative approach of parametrizing the loss development curve and using logistic regression to generate the ultimate loss estimate for each homogeneous group (accident year or delinquency period). The methodology was tested on an actual MI claim development dataset where various cohorts followed a sigmoidal trend, but levels varied substantially depending upon the economic and operational conditions during the development period spanning over many years. The proposed approach provides the ability to indirectly incorporate such exogenous factors and produce more stable loss forecasts for reserving purposes as compared to the traditional CL and BF methods.

Effectiveness of Earthing System in Vertical Configurations

This paper presents the measurement and simulation results by Finite Element Method (FEM) for earth resistance (RDC) for interconnected vertical ground rod configurations. The soil resistivity was measured using the Wenner four-pin Method, and RDC was measured using the Fall of Potential (FOP) method, as outlined in the standard. Genetic Algorithm (GA) is employed to interpret the soil resistivity to that of a 2-layer soil model. The same soil resistivity data that were obtained by Wenner four-pin method were used in FEM for simulation. This paper compares the results of RDC obtained by FEM simulation with the real measurement at field site. A good agreement was seen for RDC obtained by measurements and FEM. This shows that FEM is a reliable software to be used for design of earthing systems. It is also found that the parallel rod system has a better performance compared to a similar setup using a grid layout.

Investigating the Potential for Introduction of Warm Mix Asphalt in Kuwait Using the Volcanic Ash

The current applied asphalt technology for Kuwait roads pavement infrastructure is the hot mix asphalt (HMA) pavement, including both pen grade and polymer modified bitumen (PMBs), that is produced and compacted at high temperature levels ranging from 150 to 180 °C. There are no current specifications for warm and cold mix asphalts in Kuwait’s Ministry of Public Works (MPW) asphalt standard and specifications. The process of the conventional HMA is energy intensive and directly responsible for the emission of greenhouse gases and other environmental hazards into the atmosphere leading to significant environmental impacts and raising health risk to labors at site. Warm mix asphalt (WMA) technology, a sustainable alternative preferred in multiple countries, has many environmental advantages because it requires lower production temperatures than HMA by 20 to 40 °C. The reduction of temperatures achieved by WMA originates from multiple technologies including foaming and chemical or organic additives that aim to reduce bitumen and improve mix workability. This paper presents a literature review of WMA technologies and techniques followed by an experimental study aiming to compare the results of produced WMA samples, using a water containing additive (foaming process), at different compaction temperatures with the HMA control volumetric properties mix designed in accordance to the new MPW’s specifications and guidelines.

The Factors Influencing Consumer Intentions to Use Internet Banking and Apps: A Case of Banks in Cambodia

The study is about the e-banking consumer behavior of five major banks in Cambodia. This work aims to examine the relationships among job relevance, trust, mobility, perceived ease of use, perceived usefulness, attitude toward using, and intention to use of internet banking and apps. Also, the research develops and tests a conceptual model of intention to use internet banking by integrating the Technology Acceptance Model (TAM) and job relevance, trust, and mobility which were supported by Theory of Reasoned Action (TRA) and Theory of Planned Behavior (TPB). The proposed model was tested using Structural Equation Modeling (SEM), which was processed by using SPSS and AMOS with a sample size of 250 e-banking users. The results showed that there is a significant positive relationship among variables and attitudes toward using internet banking, and apps are the most factor influencing consumers’ intention to use internet banking and apps with the importance level in SEM 0.82 accounted by 82%. Significantly, all six hypotheses were accepted.

Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components

This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.

Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm

In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.

A Bio-Ecological Perspective on Risk Awareness and Factors Associated with Substance Use during Pregnancy in Communities of the Western Cape Province, South Africa

Substance use among pregnant women is a perennial problem in the Western Cape Province of South Africa. There are many influential elements related with substance use among women of childbearing-age. Factors associated with substance use during pregnancy were explored using qualitative research approach and bio-ecological theoretical framework was utilised to guide the study. Participants were selected using purposive sampling. Participants accessed from the Department of Social Development who met the inclusion criteria of the study were interviewed using semi structured interviews. Participants were referred for psychological intervention during the interview if deemed necessary. Braun and Clarke’s six phases of thematic analysis were used to analyse the data. The study adhered to ethical measures for the participants’ protection. Participants had been knowledgeable about the study earlier than the initiation of the interviews and the important points of their voluntary participation had been explained. The key findings from this study illustrate that social factors, individual area and romantic relationship are the major contributing factors to substance use among pregnant ladies in this sample. Recommendations arising from the study encompass that the stakeholders, rehabilitation centers, Department of Health and future researchers ought to act proactively against substance use all through pregnancy.

Experimental Investigation on the Fire Performance of Corrugated Sandwich Panels made from Renewable Material

The use of renewable substitutes in various semi-structural and structural applications has experienced an increase since the last few decades. Sandwich panels have been used for many decades, although research on understanding the effects of the core structures on the panels’ fire-reaction properties is limited. The current work investigates the fire-performance of a corrugated sandwich panel made from renewable, biodegradable, and sustainable material, plywood. The bench-scale fire testing apparatus, cone-calorimeter, was employed to evaluate the required fire-reaction properties of the sandwich core in a panel configuration, with three corrugated layers glued together with face-sheets under a heat irradiance of 50 kW/m2. The study helped in documenting a unique heat release trend associated with the fire performance of the 3-layered corrugated sandwich panels and in understanding the structural stability of the samples in the event of a fire. Furthermore, the total peak heat release rate was observed to be around 421 kW/m2, which is significantly low compared to many polymeric materials in the literature. The total smoke production was also perceived to be very limited compared to other structural materials, and the total heat release was also nominal. The time to ignition of 21.7 s further outlined the advantages of using the plywood component since polymeric composites, even with flame-retardant additives, tend to ignite faster. Overall, the corrugated plywood sandwich panels had significant fire-reaction properties and could have important structural applications. The possible use of structural panels made from bio-degradable material opens a new avenue for the use of similar structures in sandwich panel preparation.

Preliminary Geotechnical Properties of Uncemented Sandstone Kati Formation

Assessment of geotechnical properties of the subsoil is necessary for generating relevant input for the design and construction of a foundation. It is significant for the future development in the area. The focus of this research is to investigate the preliminary geotechnical properties of the uncemented sandstone from Kati formation at Puncak Iskandar, Seri Iskandar. A series of basic soil tests, oedometer and direct shear box tests were carried out to obtain the soil parameters. The uncemented sandstone of Kati Formation was found to have well-graded and poorly graded sand distribution, depending on the location where the samples were obtained. The sand grains distribution was in a range of 82%-100% while, the specific gravity of the uncemented sandstone is in the range 2.65-2.86. The preconsolidation pressure for USB3 was 990 kPa indicating that the sandstone at USB3 sample had undergone 990 kPa of overburden pressure. The angle of friction for uncemented sandstone was ranging between 23.34°-32.92°.

Blueprinting of a Normalized Supply Chain Processes: Results in Implementing Normalized Software Systems

With the technology evolving every day and with the increase in global competition, industries are always under the pressure to be the best. They need to provide good quality products at competitive prices, when and how the customer wants them.  In order to achieve this level of service, products and their respective supply chain processes need to be flexible and evolvable; otherwise changes will be extremely expensive, slow and with many combinatorial effects. Those combinatorial effects impact the whole organizational structure, from a management, financial, documentation, logistics and specially the information system Enterprise Requirement Planning (ERP) perspective. By applying the normalized system concept/theory to segments of the supply chain, we believe minimal effects, especially at the time of launching an organization global software project. The purpose of this paper is to point out that if an organization wants to develop a software from scratch or implement an existing ERP software for their business needs and if their business processes are normalized and modular then most probably this will yield to a normalized and modular software system that can be easily modified when the business evolves. Another important goal of this paper is to increase the awareness regarding the design of the business processes in a software implementation project. If the blueprints created are normalized then the software developers and configurators will use those modular blueprints to map them into modular software. This paper only prepares the ground for further studies;  the above concept will be supported by going through the steps of developing, configuring and/or implementing a software system for an organization by using two methods: The Software Development Lifecycle method (SDLC) and the Accelerated SAP implementation method (ASAP). Both methods start with the customer requirements, then blue printing of its business processes and finally mapping those processes into a software system.  Since those requirements and processes are the starting point of the implementation process, then normalizing those processes will end up in a normalizing software.

Creativity and Innovation in a Military Unit of South America: Decision Making Process, Socio-Emotional Climate, Shared Flow and Leadership

This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.

Entrepreneur Universal Education System: Future Evolution

The success of education is dependent on evolution and adaptation, while the traditional system has worked before, one type of education evolved with the digital age is virtual education that has influenced efficiency in today’s learning environments. Virtual learning has indeed proved its efficiency to overcome the drawbacks of the physical environment such as time, facilities, location, etc., but despite what it had accomplished, the educational system over all is not adequate for being a productive system yet. Earning a degree is not anymore enough to obtain a career job; it is simply missing the skills and creativity. There are always two sides of a coin; a college degree or a specialized certificate, each has its own merits, but having both can put you on a successful IT career path. For many of job-seeking individuals across world to have a clear meaningful goal for work and education and positively contribute the community, a productive correlation and cooperation among employers, universities alongside with the individual technical skills is a must for generations to come. Fortunately, the proposed research “Entrepreneur Universal Education System” is an evolution to meet the needs of both employers and students, in addition to gaining vital and real-world experience in the chosen fields is easier than ever. The new vision is to empower the education to improve organizations’ needs which means improving the world as its primary goal, adopting universal skills of effective thinking, effective action, effective relationships, preparing the students through real-world accomplishment and encouraging them to better serve their organization and their communities faster and more efficiently.

Nutrition Bio-Shield Superfood: Healthy and Live Herbal Supplement for Immune System Enhancement

Healthy and viable herbal supplement were prepared from wheat by a green route. This organic biomaterial was named Nutrition Bio-shield Superfood (NBS). The NBS supplement had various vitamins, macro and micro molecules, and ingredients. In this study, 20 small Balb/C labile specimens were used in a weighing 30 ± 5 range. The samples were randomly divided into different groups, then the groups were divided into 5 groups. According to the results of this study, the mean number of white blood cells and neutrophil percentage in the experimental group receiving healthy and live dietary supplement showed a significant increase at the 5% probability level in all three groups received 50, 100 and 150 mg/ kg body weight of the mouse compared to the control group. In general, the dietary supplement increases the level of immunity.

Consequential Influences of Work-Induced Emotions on the Work-Induced Happiness of Frontline Workers in Finance-Oriented Firms

Frontline workers performing client service duties in finance-oriented firms in most sub-Saharan African countries, such as Ghana, are known to be challenged in the conduct of their activities. The challenge is attributed to clients’ continued demand for real-time services from such workers, despite the introduction of technological interventions to offset the situation. This has caused such frontline workers to experience increases in their work-induced emotions with consequential effects on their work-induced happiness. This study, therefore, explored the effect of frontline workers’ work-induced emotions on their worked-induced happiness when providing tellering services to clients. A cross-sectional design and quantitative technique were used. Data were collected from a sample of 280 frontline workers using questionnaire. Based on the analysis, it was found that an increase in the frontline workers’ work-induced emotions, caused by their feelings of strain, burnout, frustration, and hard work, had consequential effect on their work-induced happiness. This consequential effect was also found to be aggravated by the workers’ senses of being stretched beyond limit, being emotionally drained, and being used up by their work activities. It is concluded that frontline workers in finance-oriented firms can provide quality real-time services to clients without increases in their work-induced emotions, but with enhanced work-induced happiness, when the psychological and physiological emotional factors associated with the challenged work activities are understood and remedied. Management of the firms can use such understanding to redesign the activities of their frontline workers and improve the quality of their service delivery interactivity with clients.

Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack

This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance.

Health Risk Assessment of Heavy Metals in the Contaminated and Uncontaminated Soils

Application of health risk assessment methods is important in order to comprehend the risk of human exposure to heavy metals and other dangerous pollutants. Four soil samples were collected at distances of 10, 20, 30 m and the control 100 m away from the dump site at depths of 0.3, 0.6 and 0.9 m. The collected soil samples were examined for Zn, Cu, Pb, Cd and Ni using standard methods. The health risks via the main pathways of human exposure to heavy metal were detected using relevant standard equations. Hazard quotient was calculated to determine non-carcinogenic health risk for each individual heavy metal. Life time cancer risk was calculated to determine the cumulative life cancer rating for each exposure pathway. The estimated health risk values for adults and children were generally lower than the reference dose. The calculated hazard quotient for the ingestion, inhalation and dermal contact pathways were less than unity. This means that there is no detrimental concern to the health on human exposure to heavy metals in contaminated soil. The life time cancer risk 5.4 × 10-2 was higher than the acceptable threshold value of 1 × 10-4 which is reflected to have significant health effects on human exposure to heavy metals in contaminated soil. Good hygienic practices are recommended to ease the potential risk to children and adult who are exposed to contaminated soils. Also, the local authorities should be made aware of such health risks for the purpose of planning the management strategy accordingly.

Design and Analysis of Fault Tolerate feature of n-Phase Induction Motor Drive

This paper presents design and analysis of fault tolerate feature of n-phase induction motor drive. The n-phase induction motor (more than 3-phases) has a number of advantages over conventional 3-phase induction motor, it has low torque pulsation with increased torque density, more fault tolerant feature, low current ripple with increased efficiency. When increasing the number of phases, it has reduced current per phase without increasing per phase voltage, resulting in an increase in the total power rating of n-phase motors in the same volume machine. In this paper, the theory of operation of a multi-phase induction motor is discussed. The detailed study of d-q modeling of n-phase induction motors is elaborated. The d-q model of n-phase (5, 6, 7, 9 and 12) induction motors is developed in a MATLAB/Simulink environment. The steady state and dynamic performance of the multi-phase induction motor is studied under varying load conditions. Comparison of 5-phase induction is presented under normal and fault conditions.

Improvement of Contractor’s Competitiveness through Sustainable Construction Practices in UAE

Sustainability of construction projects is an important issue to be addressed since the sector will continue to be developed in the coming years, especially in developing countries. Thus, it is significant to discover approaches and solutions for improving sustainability. Currently, the construction industry is the largest consumer of natural resources. This is the same in other countries in the Gulf region, and the United Arab Emirates (UAE) has limited natural resources such as water, electricity, etc. Recently, the UAE has taken several actions in order to implement sustainable initiatives within its construction industry. Within the industry, the contractors’ role is significant in promoting sustainable development by taking the responsibility to minimize their negative impacts on the environment and society, and maximize their economic distribution. In this research, sustainability will be studied as an important key to bring competitive advantages to contracting organizations. The contractors should understand the need to improve their sustainable performance in order to expand their business competitiveness. Competitiveness at the construction project level refers to a contractor’s ability to compete for a project. There is less focus on how to improve contractors’ competitiveness by implementing sustainable construction practices. Based on an inclusive literature review on the relationship between sustainability performance and business competitiveness, this research will conduct a study of sustainable practice in the construction industry and the relationship between sustainability performance and business competitiveness in order to develop a framework for evaluating how contractors can improve their competitiveness in terms of more efficient processes, enhancements in productivity, and lower costs of compliance in order to reduce the initial project cost and obtain market opportunities in the UAE. The research findings will provide a framework that can be a useful guideline for contractors to develop their sustainability policy, strategy and practice for meeting the increased requirements for sustainable development in construction.

Characterization of a Hypoeutectic Al Alloy Obtained by Selective Laser Melting

In this investigation, a hypoeutectic AlSi11Cu alloy was printed. This alloy was obtained in powder form with an average particle size of 40 µm. Bars 20 mm in diameter and 100 mm in length were printed with the building direction parallel to the bars' longitudinal direction. The microstructural characterization demonstrated an Al matrix surrounded by a Si network forming a coral-like pattern. The microstructure of the alloy showed a heterogeneous behavior with a mixture of columnar and equiaxed grains. Likewise, the texture indicated that the columnar grains were preferentially oriented towards the building direction, while the equiaxed followed a texture dominated by the cube component. On the other hand, the as-printed material strength showed higher values than those obtained in the same alloy using conventional processes such as casting. In addition, strength and ductility differences were found in the printed material, depending on the measurement direction. The highest values were obtained in the radial direction (565 MPa maximum strength and 4.8% elongation to failure). The lowest values corresponded to the transverse direction (508 MPa maximum strength and 3.2 elongation to failure), which corroborate the material anisotropy.