Preserving Melon by Osmotic Dehydration in a Ternary System

In this study, the kinetics of osmotic dehydration of melons (Tille variety) in a ternary system followed by air-drying for preserving melons in the summer to be used in the winter were investigated. The effect of different osmotic solution concentrations 30, 40 and 50% (w/w) of sucrose with 10% NaCl salt and fruit to solution ratios 1:4, 1:5 and 1:6 on the mass transfer kinetics during osmotic dehydration of melon in ternary solution namely sucrosesalt- water followed by air-drying were studied. The diffusivity of water during air-drying was enhanced after the fruit samples were immersed in the osmotic solution after 60 min. Samples non-treated and pre-treated during one hour in osmotic solutions with 60% (w/w) of sucrose with 10% NaCl salt and fruit to solution ratio of 1:4 were dried in a hot air-dryer at 60oC (2 m/s) until equilibrium was achieved.

Numerical Investigation into Mixing Performance of Electrokinetically-Driven Power-Law Fluids in Microchannel with Patterned Trapezoid Blocks

The study investigates the mixing performance of electrokinetically-driven power-law fluids in a microchannel containing patterned trapezoid blocks. The effects of the geometry parameters of the patterned trapezoid blocks and the flow behavior index in the power-law model on the mixing efficiency within the microchannel are explored. The results show that the mixing efficiency can be improved by increasing the width of the blocks and extending the length of upper surface of the blocks. In addition, the results show that the mixing efficiency increases with an increasing flow behavior index. Furthermore, it is shown that a heterogeneous patterning of the zeta potential on the upper surfaces of the trapezoid blocks prompts the formation of local flow recirculations, and therefore improves the mixing efficiency. Consequently, it is shown that the mixing performance improves with an increasing magnitude of the heterogeneous surface zeta potential.

Hydropriming and Osmopriming Effects on Cumin(Cuminum Cyminum L.) Seeds Germination

In production of medicinal plants, seed germination is very important problem. The treated seeds (control, hydro priming and ZnSO4) of Cumin (Cuminum cyminum L.) were evaluated at germination and seedling growth for tolerance to salt (NaCl and Na2SO4) conditions at the same water potentials of 0.0, -0.3, -0.6, - 0.9 and -1.2MPa. Electrical conductivity (EC) values of the NaCl solutions were 0.0, 6.5, 12.7, 18.4 and 23.5 dSm-1, respectively. The objective of the study was to determine factors responsible for germination and early seedling growth due to salt toxicity or osmotic effect and to optimize the best priming treatment for these stress conditions. Results revealed that germination delayed in both solutions, having variable germination with different priming treatments. Germination, shoot and weight, root and shoot length were higher but mean germination time and abnormal germination percentage were lower in NaCl than Na2SO4 at the same water potential. The root / shoot weight and R/S length increased with increase in osmotic potential in both NaCl and Na2SO4 solutions. NaCl had less inhibitor effect on seedling growth than the germination. It was concluded that inhibition of germination at the same water potential of NaCl and Na2SO4 resulted from salt toxicity rather than osmotic effect. Hydro priming increased germination and seedling growth under salt stress. This protocol has practical importance and could be recommended to farmers to achieve higher germination and uniform emergence under field conditions.

Interaction of Electroosmotic Flow on Isotachophoretic Transport of Ions

A numerical study on the influence of electroosmotic flow on analyte preconcentration by isotachophoresis ( ITP) is made. We consider that the double layer induced electroosmotic flow ( EOF) counterbalance the electrophoretic velocity and a stationary ITP stacked zones results. We solve the Navier-Stokes equations coupled with the Nernst-Planck equations to determine the local convective velocity and the preconcentration dynamics of ions. Our numerical algorithm is based on a finite volume method along with a secondorder upwind scheme. The present numerical algorithm can capture the the sharp boundaries of step-changes ( plateau mode) or zones of steep gradients ( peak mode) accurately. The convection of ions due to EOF reduces the resolution of the ITP transition zones and produces a dispersion in analyte zones. The role of the electrokinetic parameters which induces dispersion is analyzed. A one-dimensional model for the area-averaged concentrations based on the Taylor-Aristype effective diffusivity is found to be in good agreement with the computed solutions.

Effects of Salinity and Drought Levels in Seed Germination of Five Crop Species

The heterotrophic seedling growth can be defined as a product of two components: (1) the weight of mobilized seed reserve, and (2) conversion efficiency of utilized seed reserve to seedling tissue. The first component can be further divided into (1) initial seed weight, and (2) the fraction of seed reserve, which is mobilized. The objective of this study was the identification of the sensitive seedling growth component(s) in response to drought and salinity stresses. Two experiments were separately conducted using various salinity levels (osmotic pressure) of 0, 0.25, 0.50, 0.75, 1, 1.25 and 1.5 MPa created using NaCl as first experiment and by polyethylene glycol (drought stress) of 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2 and 1.4 MPa in second experiment. Seeds of five crops species (Hordeum vulgare, Brassica napus, Zea mays, Medicago sativa and Medicago scutellata) were used in each experiment. In both experiments, seedling growth, fraction of seed reserve utilization and weight of mobilized seed reserve decreased with increasing drought and salt intensity. However, drought and salinity stresses had no effect on the conversion efficiency. It was concluded that the sensitive component of seedling growth is the weight of mobilized seed reserve.

Improvement of Semen Quality in Holstein Bulls during Heat Stress by Supplementing Omega-3 Fatty Acids

The aim of current study was to investigate the changes in the quality parameters of Holstein bull semen during the heat stress and the effect of feeding a source of omega-3 fatty acids in this period. Samples were obtained from 19 Holstein bulls during the expected time of heat stress in Iran (June to September 2009). Control group (n=10) were fed a standard concentrate feed while treatment group (n=9) had this feed top dressed with 100 g of an omega-3 enriched nutriceutical. Semen quality was assessed on ejaculates collected after 1, 5, 9 and 12 weeks of supplementation. Computer-assisted assessment of sperm motility, viability (eosinnigrosin) and hypo-osmotic swelling test (HOST) were conducted. Heat stress affected sperm quality parameters by week 5 and 9 (p