A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems

In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.

Enhancing Competition in Public Procurement for Sustained Growth: Applying a Double Selection Model to Road Procurement Auctions

Limited competition has been a serious concern in infrastructure procurement. Importantly, however, there are normally a number of potential bidders initially showing interest in proposed projects. This paper focuses on tackling the question why these initially interested bidders fade out. An empirical problem is that no bids of fading-out firms are observable. They could decide not to enter the process at the beginning of the tendering or may be technically disqualified at any point in the selection process. The paper applies the double selection model to procurement data from road development projects in developing countries and shows that competition ends up restricted, because bidders are self-selective and auctioneers also tend to limit participation depending on the size of contracts.Limited competition would likely lead to high infrastructure procurement costs, threatening fiscal sustainability and economic growth.

Recursive Least Squares Adaptive Filter a better ISI Compensator

Inter-symbol interference if not taken care off may cause severe error at the receiver and the detection of signal becomes difficult. An adaptive equalizer employing Recursive Least Squares algorithm can be a good compensation for the ISI problem. In this paper performance of communication link in presence of Least Mean Square and Recursive Least Squares equalizer algorithm is analyzed. A Model of communication system having Quadrature amplitude modulation and Rician fading channel is implemented using MATLAB communication block set. Bit error rate and number of errors is evaluated for RLS and LMS equalizer algorithm, due to change in Signal to Noise Ratio (SNR) and fading component gain in Rician fading Channel.

Performance of Soft Handover Algorithm in Varied Propagation Environments

CDMA cellular networks support soft handover, which guarantees the continuity of wireless services and enhanced communication quality. Cellular networks support multimedia services under varied propagation environmental conditions. In this paper, we have shown the effect of characteristic parameters of the cellular environments on the soft handover performance. We consider path loss exponent, standard deviation of shadow fading and correlation coefficient of shadow fading as the characteristic parameters of the radio propagation environment. A very useful statistical measure for characterizing the performance of mobile radio system is the probability of outage. It is shown through numerical results that above parameters have decisive effect on the probability of outage and hence the overall performance of the soft handover algorithm.

Fast Dummy Sequence Insertion Method for PAPR Reduction in WiMAX Systems

In literatures, many researches proposed various methods to reduce PAPR (Peak to Average Power Ratio). Among those, DSI (Dummy Sequence Insertion) is one of the most attractive methods for WiMAX systems because it does not require side information transmitted along with user data. However, the conventional DSI methods find dummy sequence by performing an iterative procedure until achieving PAPR under a desired threshold. This causes a significant delay on finding dummy sequence and also effects to the overall performances in WiMAX systems. In this paper, the new method based on DSI is proposed by finding dummy sequence without the need of iterative procedure. The fast DSI method can reduce PAPR without either delays or required side information. The simulation results confirm that the proposed method is able to carry out PAPR performances as similar to the other methods without any delays. In addition, the simulations of WiMAX system with adaptive modulations are also investigated to realize the use of proposed methods on various fading schemes. The results suggest the WiMAX designers to modify a new Signal to Noise Ratio (SNR) criteria for adaptation.

A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Optimal Power Allocation to Diversity Branches of Cooperative MISO Sensor Networks

In the context of sensor networks, where every few dB saving counts, the novel node cooperation schemes are reviewed where MIMO techniques play a leading role. These methods could be treated as joint approach for designing physical layer of their communication scenarios. Then we analyzed the BER performance of transmission diversity schemes under a general fading channel model and proposed a power allocation strategy to the transmitting sensor nodes. This approach is then compared to an equal-power assignment method and its performance enhancement is verified by the simulation. Another key point of the contribution lies in the combination of optimal power allocation and sensor nodes- cooperation in a transmission diversity regime (MISO). Numerical results are given through figures to demonstrate the optimality and efficiency of proposed combined approach.

Assessment of Channel Unavailability Effect on the Wireless Networks Teletraffic Modeling and Analysis

Whereas cellular wireless communication systems are subject to short-and long-term fading. The effect of wireless channel has largely been ignored in most of the teletraffic assessment researches. In this paper, a mathematical teletraffic model is proposed to estimate blocking and forced termination probabilities of cellular wireless networks as a result of teletraffic behavior as well as the outage of the propagation channel. To evaluate the proposed teletraffic model, gamma inter-arrival and general service time distributions have been considered based on wireless channel fading effect. The performance is evaluated and compared with the classical model. The proposed model is dedicated and investigated in different operational conditions. These conditions will consider not only the arrival rate process, but also, the different faded channels models.

A Cooperative Weighted Discriminator Energy Detector Technique in Fading Environment

The need in cognitive radio system for a simple, fast, and independent technique to sense the spectrum occupancy has led to the energy detection approach. Energy detector is known by its dependency on noise variation in the system which is one of its major drawbacks. In this paper, we are aiming to improve its performance by utilizing a weighted collaborative spectrum sensing, it is similar to the collaborative spectrum sensing methods introduced previously in the literature. These weighting methods give more improvement for collaborative spectrum sensing as compared to no weighting case. There is two method proposed in this paper: the first one depends on the channel status between each sensor and the primary user while the second depends on the value of the energy measured in each sensor.

Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise

Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.

An Improved STBC Structure and Transmission Scheme for High Rate and Reliability in OFDMA Cooperative Communication

Space-time block code(STBC) has been studied to get full diversity and full rate in multiple input multiple output(MIMO) system. Achieving full rate is difficult in cooperative communications due to the each user consumes the time slots for transmitting information in cooperation phase. So combining MIMO systems with cooperative communications has been researched for full diversity and full rate. In orthogonal frequency division multiple access (OFDMA) system, it is an alternative way that each user shares their allocated subchannels instead of using the MIMO system to improve the transmission rate. In this paper, a Decode-and-forward (DF) based cooperative communication scheme is proposed. The proposed scheme has improved transmission rate and reliability in multi-path fading channel of the OFDMA up-link condition by modified STBC structure and subchannel sharing.

Improving Image Quality in Remote Sensing Satellites using Channel Coding

Among other factors that characterize satellite communication channels is their high bit error rate. We present a system for still image transmission over noisy satellite channels. The system couples image compression together with error control codes to improve the received image quality while maintaining its bandwidth requirements. The proposed system is tested using a high resolution satellite imagery simulated over the Rician fading channel. Evaluation results show improvement in overall system including image quality and bandwidth requirements compared to similar systems with different coding schemes.

Embedded Throughput Improving of Low-rate EDR Packets for Lower-latency

With increasing utilization of the wireless devices in different fields such as medical devices and industrial fields, the paper presents a method for simplify the Bluetooth packets with throughput enhancing. The paper studies a vital issue in wireless communications, which is the throughput of data over wireless networks. In fact, the Bluetooth and ZigBee are a Wireless Personal Area Network (WPAN). With taking these two systems competition consideration, the paper proposes different schemes for improve the throughput of Bluetooth network over a reliable channel. The proposition depends on the Channel Quality Driven Data Rate (CQDDR) rules, which determines the suitable packet in the transmission process according to the channel conditions. The proposed packet is studied over additive White Gaussian Noise (AWGN) and fading channels. The Experimental results reveal the capability of extension of the PL length by 8, 16, 24 bytes for classic and EDR packets, respectively. Also, the proposed method is suitable for the low throughput Bluetooth.

Coding based Synchronization Algorithm for Secondary Synchronization Channel in WCDMA

A new code synchronization algorithm is proposed in this paper for the secondary cell-search stage in wideband CDMA systems. Rather than using the Cyclically Permutable (CP) code in the Secondary Synchronization Channel (S-SCH) to simultaneously determine the frame boundary and scrambling code group, the new synchronization algorithm implements the same function with less system complexity and less Mean Acquisition Time (MAT). The Secondary Synchronization Code (SSC) is redesigned by splitting into two sub-sequences. We treat the information of scrambling code group as data bits and use simple time diversity BCH coding for further reliability. It avoids involved and time-costly Reed-Solomon (RS) code computations and comparisons. Analysis and simulation results show that the Synchronization Error Rate (SER) yielded by the new algorithm in Rayleigh fading channels is close to that of the conventional algorithm in the standard. This new synchronization algorithm reduces system complexities, shortens the average cell-search time and can be implemented in the slot-based cell-search pipeline. By taking antenna diversity and pipelining correlation processes, the new algorithm also shows its flexible application in multiple antenna systems.

Performance Analysis of Selective Adaptive Multiple Access Interference Cancellation for Multicarrier DS-CDMA Systems

In this paper, Selective Adaptive Parallel Interference Cancellation (SA-PIC) technique is presented for Multicarrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) scheme. The motivation of using SA-PIC is that it gives high performance and at the same time, reduces the computational complexity required to perform interference cancellation. An upper bound expression of the bit error rate (BER) for the SA-PIC under Rayleigh fading channel condition is derived. Moreover, the implementation complexities for SA-PIC and Adaptive Parallel Interference Cancellation (APIC) are discussed and compared. The performance of SA-PIC is investigated analytically and validated via computer simulations.

Adaptive Subchannel Allocation for MC-CDMA System

Multicarrier code-division multiple-access is one of the effective techniques to gain its multiple access capability, robustness against fading, and to mitigate the ISI. In this paper, we propose an improved mulcarrier CDMA system with adaptive subchannel allocation. We analyzed the performance of our proposed system in frequency selective fading environment with narrowband interference existing and compared it with that of parallel transmission over many subchannels (namely, conventional MC-CDMA scheme) and DS-CDMA system. Simulation results show that adaptive subchannel allocation scheme, when used in conventional multicarrier CDMA system, the performance will be greatly improved.

Performance Analysis of a Free-Space Optical Code Division Multiple Access through Atmospheric Turbulence Channel

In this paper, the effect of atmospheric turbulence on bit error probability in free-space optical CDMA scheme with Sequence Inverse Keyed (SIK) optical correlator receiver is analyzed. Here Intensity Modulation scheme is considered for transmission. The turbulence induced fading is described by the newly introduced gamma-gamma pdf[1] as a tractable mathematical model for atmospheric turbulence. Results are evaluated with Gold and Kasami code & it is shown that Gold sequence can be used for more efficient transmission than Kasami sequence in an atmospheric turbulence channel.

A Novel Pilot Scheme for Frequency Offset and Channel Estimation in 2x2 MIMO-OFDM

The Carrier Frequency Offset (CFO) due to timevarying fading channel is the main cause of the loss of orthogonality among OFDM subcarriers which is linked to inter-carrier interference (ICI). Hence, it is necessary to precisely estimate and compensate the CFO. Especially for mobile broadband communications, CFO and channel gain also have to be estimated and tracked to maintain the system performance. Thus, synchronization pilots are embedded in every OFDM symbol to track the variations. In this paper, we present the pilot scheme for both channel and CFO estimation where channel estimation process can be carried out with only one OFDM symbol. Additional, the proposed pilot scheme also provides better performance in CFO estimation comparing with the conventional orthogonal pilot scheme due to the increasing of signal-tointerference ratio.

The Performance of Genetic Algorithm for Synchronized Chaotic Chen System in CDMA Satellite Channel

Synchronization is a difficult problem in CDMA satellite communications. Due to the influence of additive noise and fading in the mobile channel, it is not easy to keep up with the attenuation and offset. This paper considers a recently proposed approach to solve the problem of synchronization chaotic Chen system in CDMA satellite communication in the presence of constant attenuation and offset. An analytic algorithm that provides closed form channel and carrier offset estimates is presented. The principle of this approach is based on adding a compensation block before the receiver to compensate the distortion of the imperfect channel by using genetic algorithm. The resultants presented, show that the receiver is able to recover rapidly the synchronization with the transmitter.

A Simplified Adaptive Decision Feedback Equalization Technique for π/4-DQPSK Signals

We present a simplified equalization technique for a π/4 differential quadrature phase shift keying ( π/4 -DQPSK) modulated signal in a multipath fading environment. The proposed equalizer is realized as a fractionally spaced adaptive decision feedback equalizer (FS-ADFE), employing exponential step-size least mean square (LMS) algorithm as the adaptation technique. The main advantage of the scheme stems from the usage of exponential step-size LMS algorithm in the equalizer, which achieves similar convergence behavior as that of a recursive least squares (RLS) algorithm with significantly reduced computational complexity. To investigate the finite-precision performance of the proposed equalizer along with the π/4 -DQPSK modem, the entire system is evaluated on a 16-bit fixed point digital signal processor (DSP) environment. The proposed scheme is found to be attractive even for those cases where equalization is to be performed within a restricted number of training samples.