Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications

Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas.

Stress Analysis of Hexagonal Element for Precast Concrete Pavements

While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.

Factors Influencing Intention to Engage in Long-term Care Services among Nursing Aide Trainees and the General Public

Rapid aging and depopulation could lead to serious problems, including workforce shortages and health expenditure costs. The current and predicted future LTC workforce shortages could be a real threat to Taiwan’s society. By means of comparison of data from 144 nursing aide trainees and 727 general public, the main purpose of the present study was to determine whether there were any notable differences between the two groups toward engaging in LTC services. Moreover, this study focused on recognizing the attributes of the general public who had the willingness to take LTC jobs but continue to ride the fence. A self-developed questionnaire was designed based on Ajzen’s Theory of Planned Behavior model. After conducting exploratory factor analysis (EFA) and reliability analysis, the questionnaire was a reliable and valid instrument for both nursing aide trainees and the general public. The main results were as follows: Firstly, nearly 70% of nursing aide trainees showed interest in LTC jobs. Most of them were middle-aged female (M = 46.85, SD = 9.31), had a high school diploma or lower, had unrelated work experience in healthcare, and were mostly unemployed. The most common reason for attending the LTC training program was to gain skills in a particular field. The second most common reason was to obtain the license. The third and fourth reasons were to be interested in caring for people and to increase income. The three major reasons that might push them to leave LTC jobs were physical exhaustion, payment is bad, and being looked down on. Secondly, the variables that best-predicted nursing aide trainees’ intention to engage in LTC services were having personal willingness, perceived behavior control, with high school diploma or lower, and supported from family and friends. Finally, only 11.80% of the general public reported having interest in LTC jobs (the disapproval rating was 50% for the general public). In comparison to nursing aide trainees who showed interest in LTC settings, 64.8% of the new workforce for LTC among the general public was male and had an associate degree, 54.8% had relevant healthcare experience, 67.1% was currently employed, and they were younger (M = 32.19, SD = 13.19) and unmarried (66.3%). Furthermore, the most commonly reason for the new workforce to engage in LTC jobs were to gain skills in a particular field. The second priority was to be interested in caring for people. The third and fourth most reasons were to give back to society and to increase income, respectively. The top five most commonly reasons for the new workforce to quitting LTC jobs were listed as follows: physical exhaustion, being looked down on, excessive working hours, payment is bad, and excessive job stress.

Investigating the Pedestrian Willingness to Pay to Choose Appropriate Policies for Improving the Safety of Pedestrian Facilities

Road traffic accidents lead to a higher rate of death and injury, especially in vulnerable road users such as pedestrians. Improving the safety of facilities for pedestrians is a major concern for policymakers because of the high number of pedestrian fatalities and direct and indirect costs which are imposed to the society. This study focuses on the idea of determining the willingness to pay of pedestrians for increasing their safety while crossing the street. In this study, three different scenarios including crossing the street with zebra crossing facilities, crossing the street with zebra crossing facilities and installing a pedestrian traffic light and constructing a pedestrian bridge with escalator are presented. The research was conducted based on stated preferences method. The required data were collected from a questionnaire that consisted of three parts: pedestrian’s demographic characteristics, travel characteristics and scenarios. Four different payment amounts are presented for each scenario and a logit model has been built for each proposed payment. The results show that sex, age, education, average household income and individual salary have significant effect on choosing a scenario. Among the policies that have been mentioned through the questionnaire scenarios, the scenario of crossing the street with zebra crossing facilities and installing a traffic lights is the most frequent, with willingness to pay 10,000 Rials and the scenario of crossing the street with a zebra crossing with a willingness to pay 100,000 Rials having the least frequency. For all scenarios, as the payment is increasing, the willingness to pay decreases.

Water Management Scheme: Panacea to Development Using Nigeria’s University of Ibadan Water Supply Scheme as a Case Study

The supply of potable water at least is a very important index in national development. Water tariffs depend on the treatment cost which carries the highest percentage of the total operation cost in any water supply scheme. In order to keep water tariffs as low as possible, treatment costs have to be minimized. The University of Ibadan, Nigeria, water supply scheme consists of a treatment plant with three distribution stations (Amina way, Kurumi and Lander) and two raw water supply sources (Awba dam and Eleyele dam). An operational study of the scheme was carried out to ascertain the efficiency of the supply of potable water on the campus to justify the need for water supply schemes in tertiary institutions. The study involved regular collection, processing and analysis of periodic operational data. Data collected include supply reading (water production on daily basis) and consumers metered reading for a period of 22 months (October 2013 - July 2015), and also collected, were the operating hours of both plants and human beings. Applying the required mathematical equations, total loss was determined for the distribution system, which was translated into monetary terms. Adequacies of the operational functions were also determined. The study revealed that water supply scheme is justified in tertiary institutions. It was also found that approximately 10.7 million Nigerian naira (N) is lost to leakages during the 22-month study period; the system’s storage capacity is no longer adequate, especially for peak water production. The capacity of the system as a whole is insufficient for the present university population and that the existing water supply system is not being operated in an optimal manner especially due to personnel, power and system ageing constraints.

Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams

This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.

The Current Home Hemodialysis Practices and Patients’ Safety Related Factors: A Case Study from Germany

The increasing costs of healthcare on one hand, and the rise in aging population and associated chronic disease, on the other hand, are putting increasing burden on the current health care system in many Western countries. For instance, chronic kidney disease (CKD) is a common disease and in Europe, the cost of renal replacement therapy (RRT) is very significant to the total health care cost. However, the recent advancement in healthcare technology, provide the opportunity to treat patients at home in their own comfort. It is evident that home healthcare offers numerous advantages apparently, low costs and high patients’ quality of life. Despite these advantages, the intake of home hemodialysis (HHD) therapy is still low in particular in Germany. Many factors are accounted for the low number of HHD intake. However, this paper is focusing on patients’ safety-related factors of current HHD practices in Germany. The aim of this paper is to analyze the current HHD practices in Germany and to identify risks related factors if any exist. A case study has been conducted in a dialysis center which consists of four dialysis centers in the south of Germany. In total, these dialysis centers have 350 chronic dialysis patients, of which, four patients are on HHD. The centers have 126 staff which includes six nephrologists and 120 other staff i.e. nurses and administration. The results of the study revealed several risk-related factors. Most importantly, these centers do not offer allied health services at the pre-dialysis stage, the HHD training did not have an established curriculum; however, they have just recently developed the first version. Only a soft copy of the machine manual is offered to patients. Surprisingly, the management was not aware of any standard available for home assessment and installation. The home assessment is done by a third party (i.e. the machines and equipment provider) and they may not consider the hygienic quality of the patient’s home. The type of machine provided to patients at home is similar to the one in the center. The model may not be suitable at home because of its size and complexity. Even though portable hemodialysis machines, which are specially designed for home use, are available in the market such as the NxStage series. Besides the type of machine, no assistance is offered for space management at home in particular for placing the machine. Moreover, the centers do not offer remote assistance to patients and their carer at home. However, telephonic assistance is available. Furthermore, no alternative is offered if a carer is not available. In addition, the centers are lacking medical staff including nephrologists and renal nurses.

Reverse Logistics in Clothing Recycling: A Case Study in Chengdu

Clothing recycling bin is a traditional way to collect textile waste in many areas. In the clothing recycling business, the transportation cost normally takes over 50% of total costs. This case gives a good way to reduce transportation cost by reverse logistics system. In this reverse logistics system, there are offline strategic alliance partners, such as transport firms, convenience stores, laundries, and post office which are integrated onto the mobile APP. Offline strategic alliance partners provide the service of textile waste collection, and transportation by their vacant vehicles return journey from convenience stores, laundries and post offices to sorting centers. The results of the case study provide the strategic alliance with a valuable and light - asset business model by using the logistics of offline memberships. The company in this case just focuses on textile waste sorting, reuse, recycling etc. The research method of this paper is a case study of a clothing recycling company in Chengdu by field research and interview; the analysis is based on the theory of the reverse logistics system.

Designing an Integrated Platform for Real-Time Recommendations Sharing among the Aged and People Living with Cancer

The world is expected to experience growth in the number of ageing population, and this will bring about high cost of providing care for these valuable citizens. In addition, many of these live with chronic diseases that come with old age. Providing adequate care in the face of rising costs and dwindling personnel can be challenging. However, advances in technologies and emergence of the Internet of Things are providing a way to address these challenges while improving care giving. This study proposes the integration of recommendation systems into homecare to provide real-time recommendations for effective management of people receiving care at home and those living with chronic diseases. Using the simplified Training Logic Concept, stakeholders and requirements were identified. Specific requirements were gathered from people living with cancer. The solution designed has two components namely home and community, to enhance recommendations sharing for effective care giving. The community component of the design was implemented with the development of a mobile app called Recommendations Sharing Community for Aged and Chronically Ill People (ReSCAP). This component has illustrated the possibility of real-time recommendations, improved recommendations sharing among care receivers and between a physician and care receivers. Full implementation will increase access to health data for better care decision making.

Mitigating the Cost of Empty Container Repositioning through the Virtual Container Yard: An Appraisal of Carriers’ Perceptions

Empty container repositioning is a fundamental problem faced by the shipping industry. The virtual container yard is a novel strategy underpinning the container interchange between carriers that could substantially reduce this ever-increasing shipping cost. This paper evaluates the shipping industry perception of the virtual container yard using chi-square tests. It examines if the carriers perceive that the selected independent variables, namely culture, organization, decision, marketing, attitudes, legal, independent, complexity, and stakeholders of carriers, impact the efficiency and benefits of the virtual container yard. There are two major findings of the research. Firstly, carriers view that complexity, attitudes, and stakeholders may impact the effectiveness of container interchange and may influence the perceived benefits of the virtual container yard. Secondly, the three factors of legal, organization, and decision influence only the perceived benefits of the virtual container yard. Accordingly, the implementation of the virtual container yard will be influenced by six key factors, namely complexity, attitudes, stakeholders, legal, organization and decision. Since the virtual container yard could reduce overall shipping costs, it is vital to examine the carriers’ perception of this concept.

Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran

Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.

Effect of Environmental Changes in Working Heart Rate among Industrial Workers: An Ergonomic Interpretation

Occupational health hazard is a very common term in every emerging country. Along with the unorganized sector, most organized sectors including government industries are suffering from this affliction. In addition to workload, the seasonal changes also have some impacts on working environment. With this focus in mind, one hundred male industrial workers, who are directly involved to the task of Periodic Overhauling (POH) in a fabricating workshop in the public domain are selected for this research work. They have been studied during work periods throughout different seasons in a year. For each and every season, the participants working heart rate (WHR) is measured and compared with the standards given by different national and internationally recognized agencies i.e., World Health Organization (WHO) and American Conference of Governmental Industrial Hygienists (ACGIH) etc. The different environmental parameters i.e. dry bulb temperature (DBT), wet bulb temperature (WBT), globe temperature (GT), natural wet bulb temperature (NWB), relative humidity (RH), wet bulb globe temperature (WBGT), air velocity (AV), effective temperature (ET) are recorded throughout the seasons to critically observe the effect of seasonal changes on the WHR of the workers. The effect of changes in environment to the WHR of the workers is very much surprising. It is found that the percentages of workers who belong to the ‘very heavy’ workload category are 83.33%, 66.66% and 16.66% in the summer, rainy and winter seasons, respectively. Ongoing undertaking of this type of job profile forces the worker towards occupational disorders causing absenteeism. This occurrence results in lower production rates, and on the other hand, costs due to medical claims also weaken the industry’s economic condition. In this circumstance, the authors are trying to focus on some remedial measures from the ergonomic angle by proposing a new work/ rest regimen and introducing engineering controls along with management controls which may help the worker, and consequently, the management also.

Design and Fabrication of a Parabolic Trough Collector and Experimental Investigation of Wind Impact on Direct Steam Production in Tehran

The present paper aims to the techno-economic feasibility of enhancing low-cost parabolic trough collectors in the light of developing the use of solar energy in under-developed regions where expensive high-tech solar devices cannot be afforded. Moreover, the collector is aimed to produce steam so that its performance is based on heat which can be discovered. In this regard, the manufacturing process and the detailed design models in Solidworks software are elaborated. Furthermore, the colletor’s material is chosen in a way to minimize the costs. Finally, to assess the performance of the built collector, it is installed in the site of Shahid Beheshti University, Tehran, and the values of the effective peripheral parameters, such as temperature, wind speed, and most importantly, solar irradiance, are recorded simultaneously in June. According to the results obtained, the manufactured collector with the aperture area of 2 m2 (1×2 m) is capable of producing 350 ml.h-1 steam. Also, the wind influence is comprehensively investigated in this paper. As a case in point, it was measured that as the wind speed maximized to 9.77 km/h, the amount of steam outlet is minimized to 580 ml.

Validation of Solar PV Inverter Harmonics Behaviour at Different Power Levels in a Test Network

Grid connected solar PV inverters need to be compliant to standard regulations regarding unwanted harmonic generation. This paper gives an introduction to harmonics, solar PV inverter voltage regulation and balancing through compensation and investigates the behaviour of harmonic generation at different power levels. Practical measurements of harmonics and power levels with a power quality data logger were made, on a test network at a university in Germany. The test setup and test results are discussed. The major finding was that between the morning and afternoon load peak windows when the PV inverters operate under low solar insolation and low power levels, more unwanted harmonics are generated. This has a huge impact on the power quality of the grid as well as capital and maintenance costs. The design of a single-tuned harmonic filter towards harmonic mitigation is presented.

Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation

This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.

Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology

This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.

A Small-Scale Flexible Test Bench for the Investigation of Fertigation Strategies in Soilless Culture

In soilless culture, the management of the nutrient solution is the most important aspect for crop growing. Fertigation dose, frequency and nutrient concentration must be planned with the objective of reaching an optimal crop growth by limiting the utilized resources and the associated costs. The definition of efficient fertigation strategies is a complex problem since fertigation requirements vary on the basis of different factors, and crops are sensitive to small variations on fertigation parameters. To the best of author knowledge, a small-scale test bench that is flexible for both nutrient solution preparation and precise irrigation is currently missing, limiting the investigations in standard practices for soilless culture. Starting from the analysis of the state of the art, this paper proposes a small-scale system that is potentially able to concurrently test different fertigation strategies. The system will be designed and implemented throughout a three year project started on August 2018. However, due to the importance of the topic within current challenges as food security and climate change, this work is spread considering that may inspire other universities and organizations.

Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces

Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (γ-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by Agrobacterium tumefaciens strain LBA4404. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins.

Closed Greenhouse Production Systems for Smart Plant Production in Urban Areas

The integration of agricultural production systems into urban areas is a challenge for the coming decades. Because of increasing greenhouse gas emission and rising resource consumption as well as costs in animal husbandry, the dietary habits of people in the 21st century have to focus on herbal foods. Intensive plant cultivation systems in large cities and megacities require a smart coupling of information, material and energy flow with the urban infrastructure in terms of Horticulture 4.0. In recent years, many puzzle pieces have been developed for these closed processes at the Humboldt University. To compile these for an urban plant production, it has to be optimized and networked with urban infrastructure systems. In the field of heat energy production, it was shown that with closed greenhouse technology and patented heat exchange and storage technology energy can be provided for heating and domestic hot water supply in the city. Closed water circuits can be drastically reducing the water requirements of plant production in urban areas. Ion sensitive sensors and new disinfection methods can help keep circulating nutrient solutions in the system for a longer time in urban plant production greenhouses.

Case Study Approach Using Scenario Analysis to Analyze Unabsorbed Head Office Overheads

Head office overhead (HOOH) is an indirect cost and is recovered through individual project billings by the contractor. Delay in a project impacts the absorption of HOOH cost allocated to that particular project and thus diminishes the expected profit of the contractor. This unabsorbed HOOH cost is later claimed by contractors as damages. The subjective nature of the available formulae to compute unabsorbed HOOH is the difficulty that contractors and owners face and thus dispute it. The paper attempts to bring together the rationale of various HOOH formulae by gathering contractor’s HOOH cost data on all of its project, using case study approach and comparing variations in values of HOOH using scenario analysis. The case study approach uses project data collected from four construction projects of a contractor in India to calculate unabsorbed HOOH costs from various available formulae. Scenario analysis provides further variations in HOOH values after considering two independent situations mainly scope changes and new projects during the delay period. Interestingly, one of the findings in this study reveals that, in spite of HOOH getting absorbed by additional works available during the period of delay, a few formulae depict an increase in the value of unabsorbed HOOH, neglecting any absorption by the increase in scope. This indicates that these formulae are inappropriate for use in case of a change to the scope of work. Results of this study can help both parties in deciding on an appropriate formula more objectively, considering the events on a project causing the delay and contractor's position in respect of obtaining new projects.