Evaluation of Deformable Boundary Condition Using Finite Element Method and Impact Test for Steel Tubes

Stainless steel pipelines are crucial components to transportation and storage in the oil and gas industry. However, the rise of random attacks and vandalism on these pipes for their valuable transport has led to more security and protection for incoming surface impacts. These surface impacts can lead to large global deformations of the pipe and place the pipe under strain, causing the eventual failure of the pipeline. Therefore, understanding how these surface impact loads affect the pipes is vital to improving the pipes’ security and protection. In this study, experimental test and finite element analysis (FEA) have been carried out on EN3B stainless steel specimens to study the impact behaviour. Low velocity impact tests at 9 m/s with 16 kg dome impactor was used to simulate for high momentum impact for localised failure. FEA models of clamped and deformable boundaries were modelled to study the effect of the boundaries on the pipes impact behaviour on its impact resistance, using experimental and FEA approach. Comparison of experimental and FE simulation shows good correlation to the deformable boundaries in order to validate the robustness of the FE model to be implemented in pipe models with complex anisotropic structure.

Determination of Post-Failure Characteristic Behaviour of Rocks under Conventional Method Based on the Mechanism of Rock Deformation Process

This work is intended to study the post-failure characteristic behaviour of rocks and the techniques of controlling the post-failure regime based on the mechanism of rocks deformation process. It is impossible to determine the post-failure regime of rocks using conventional laboratory testing equipment. This is because most testing machines are soft and therefore no information can be obtained after the peak load. Stress-strain deformation tests were conducted using both conventional and unconventional method (i.e. the closed loop servo-controlled testing machine) in accordance to ISRM standard. Normalised pre-failure curves were constructed to show the stages in the deformation process. The first type contains the Class I and progress to Class II with low strength soft brittle rocks. The second type shows entirely Class II characteristic behaviour. The third type is extremely brittle under axial loading, resulted in explosive failure, so its class could not be determined. The difficulty in obtaining the post-failure curves increases as the total volumetric strain approaches a positive value. The author’s use of normalised pre-failure curves enables identification of additional type of deformation process with very brittle response under axial loading. Testing the third type without confinement could cause equipment damage. Identification of the deformation process with the rock classes using conventional test could guide the personnel conducting tests using closed-loop servo-controlled system, to avoid equipment damage when testing rocks with third type deformation process so that testing is performed safely. It has also improved our understanding on total specimen failure and brittleness of rocks (e.g. brittle for Class II and less brittle or ductile for Class I).

Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test

The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of Gmax and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents.

Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay

Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index.

Effect of Bentonite on Shear Strength of Bushehr Calcareous Sand

Calcareous sands are found most commonly in areas adjacent to crude oil and gas, and particularly around water. These types of soil have high compressibility due to high inter-granular porosity, irregularity, fragility, and especially crushing. Also, based on experience, it has been shown that the behavior of these types of soil is not similar to silica sand in loading. Since the destructive effects of cement on the environment are obvious, other alternatives such as bentonite are popular to be used. Bentonite has always been used commercially in civil engineering projects and according to its low hydraulic conductivity, it is used for landfills, cut-off walls, and nuclear wastelands. In the present study, unconfined compression tests in five ageing periods (1, 3, 7, 14, and 28 days) after mixing different percentages of bentonite (5%, 7.5% and 10%) with Bushehr calcareous sand were performed. The relative density considered for the specimens is 50%. Optimum water content was then added to each specimen accordingly (19%, 18.5%, and 17.5%). The sample preparation method was wet tamping and the specimens were compacted in five layers. It can be concluded from the results that as the bentonite content increases, the unconfined compression strength of the soil increases. Based on the obtained results, 3-day and 7-day ageing periods showed 30% and 50% increase in the shear strength of soil, respectively.

Advanced Materials Based on Ethylene-Propylene-Diene Terpolymers and Organically Modified Montmorillonite

This paper presents studies on the development and characterization of nanocomposites based on ethylene-propylene terpolymer rubber (EPDM), chlorobutyl rubber (IIR-Cl) and organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in an internal mixer - Plasti-Corder Brabender, in suitable blending parameters, at high temperature for 11 minutes. Curing agents were embedded on a laboratory roller at 70-100 ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165 ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties. These types of nanocomposites may be used to obtain rubber seals for the space application or for other areas of application.

Experimental Investigation on Geosynthetic-Reinforced Soil Sections via California Bearing Ratio Test

Loose soils normally are of weak bearing capacity due to their structural nature. Being exposed to heavy traffic loads, they would fail in most cases. To tackle the aforementioned issue, geotechnical engineers have come up with different approaches; one of which is making use of geosynthetic-reinforced soil-aggregate systems. As these polymeric reinforcements have highlighted economic and environmentally-friendly features, they have become widespread in practice during the last decades. The present research investigates the efficiency of four different types of these reinforcements in increasing the bearing capacity of two-layered soil sections using a series California Bearing Ratio (CBR) test. The studied sections are comprised of a 10 cm-thick layer of no. 161 Firouzkooh sand (weak subgrade) and a 10 cm-thick layer of compacted aggregate materials (base course) classified as SP and GW according to the United Soil Classification System (USCS), respectively. The aggregate layer was compacted to the relative density (Dr) of 95% at the optimum water content (Wopt) of 6.5%. The applied reinforcements were including two kinds of geocomposites (type A and B), a geotextile, and a geogrid that were embedded at the interface of the lower and the upper layers of the soil-aggregate system. As the standard CBR mold was not appropriate in height for this study, the mold used for soaked CBR tests were utilized. To make a comparison between the results of stress-settlement behavior in the studied specimens, CBR values pertinent to the penetrations of 2.5 mm and 5 mm were considered. The obtained results demonstrated 21% and 24.5% increments in the amount of CBR value in the presence of geocomposite type A and geogrid, respectively. On the other hand, the effect of both geotextile and geocomposite type B on CBR values was generally insignificant in this research.

Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method

The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.

Corrosion Protection of Structural Steel by Surfactant Containing Reagents

The anti-corrosion performance of fatty acid coated mild steel samples is studied. Samples of structural steel coated with collector reagents deposited from surfactant in ethanol solution and overcoated with an epoxy barrier paint. A quantitative corrosion rate was determined by linear polarization resistance method using biopotentiostat/galvanostat 400. Coating morphology was determined by scanning electronic microscopy. A test for hydrophobic surface of steel by surfactant was done. From the samples, the main component or high content iron was determined by chemical method and other metal contents were determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) method. Prior to measuring the corrosion rate, mechanical and chemical treatments were performed to prepare the test specimens. Overcoating the metal samples with epoxy barrier paint after exposing them with surfactant the corrosion rate can be inhibited by 34-35 µm/year.

Studying the Effect of Hydrocarbon Solutions on the Properties of Epoxy Polymer Concrete

The destruction effect of hydrocarbon solutions on concrete besides its high permeability have led researchers to try to improve the performance of concrete exposed to these solutions, hence improving the durability and usability of oil concrete structures. Recently, polymer concrete is considered one of the most important types of concrete, and its behavior after exposure to oil products is still unknown. In the present work, an experimental study has been carried out, in which the prepared epoxy polymer concrete immersed in different types of hydrocarbon exposure solutions (gasoline, kerosene, and gas oil) for 120 days and compared with the reference concrete left in the air. The results for outdoor specimens indicate that the mechanical properties are increased after 120 days, but the specimens that were immersed in gasoline, kerosene, and gas oil for the same period show a reduction in compressive strength by -21%, -27% and -23%, whereas in splitting tensile strength by -19%, -24% and -20%, respectively. The reductions in ultrasonic pulse velocity for cubic specimens are -17%, -22% and -19% and in cylindrical specimens are -20%, -25% and -22%, respectively.

Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain

Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.

Seismic Performance of Reinforced Concrete Frame Structure Based on Plastic Rotation

The principal objective of this study is the evaluation of the seismic performance of reinforced concrete frame structures, taking into account of the behavior laws, reflecting the real behavior of materials, using CASTEM2000 software. A finite element model used is based in modified Takeda model with Timoshenko elements for columns and beams. This model is validated on a Vecchio experimental reinforced concrete (RC) frame model. Then, a study focused on the behavior of a RC frame with three-level and three-story in order to visualize the positioning the plastic hinge (plastic rotation), determined from the curvature distribution along the elements. The results obtained show that the beams of the 1st and 2nd level developed a very large plastic rotations, or these rotations exceed the values corresponding to CP (Collapse prevention with cp qCP = 0.02 rad), against those developed at the 3rd level, are between IO and LS (Immediate occupancy and life Safety with qIO = 0.005 rad and rad qLS = 0.01 respectively), so the beams of first and second levels submit a very significant damage.

Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator

Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.

Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests

The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.

Dopamine and Serotonin Levels in Blood Samples of Jordanian Children Who Stutter

This study examines the levels of dopamine and serotonin in blood samples of children who stutter compared with normal fluent speakers. Blood specimens from 50 children who stutter (6 females, 44 males) and 50 normal children matched age and gender were collected for the purpose of the current study. The concentrations of dopamine and serotonin were measured using the 1100 series high-performance liquid chromatography coupled with ultraviolet detector instrument (HPLC-UV). It was revealed that dopamine level in the blood samples of stuttering group and fluent group was not significant (P = 0.769), whereas the level of serotonin was significantly higher in the blood samples of stuttering group than the blood samples of fluent normal group (P = 0.015). It is concluded that serotonin blockers could be used in future studies to evaluate its role as a medication for the treatment of stuttering.

Resilient Modulus and Deformation Responses of Waste Glass in Flexible Pavement System

Experimental investigations are conducted to assess a layered structure of glass (G) - rock (R) blends under the impact of repeated loading. Laboratory tests included sieve analyses, modified compaction test and repeated load triaxial test (RLTT) is conducted on different structures of stratified GR samples to reach the objectives of this study. Waste materials are such essential components in the climate system, and also commonly used in minimising the need for natural materials in many countries. Glass is one of the most widely used groups of waste materials which have been extensively using in road applications. Full range particle size and colours of glass are collected and mixed at different ratios with natural rock material trying to use the blends in pavement layers. Whole subsurface specimen sequentially consists of a single layer of R and a layer of G-R blend. 12G/88R and 45G/55R mix ratios are employed in this research, the thickness of G-R layer was changed, and the results were compared between the pure rock and the layered specimens. The relations between resilient module (Mr) and permanent deformation with sequence number are presented. During the earlier stages of RLTT, the results indicated that the 45G/55R specimen shows higher moduli than R specimen.

The Importance of Development in Laboratory Diagnosis at the Intersection

Intersection is a critical area on a highway which is a place of conflict points and congestion due to the meeting of two or more roads. Conflicts that occur at the intersection include diverging, merging, weaving, and crossing. To deal with these conflicts, a crossing control system is needed, at a plot of intersection there are two control systems namely signal intersections and non-signalized intersections. The control system at a plot of intersection can affect the intersection performance. In Indonesia there are still many intersections with poor intersection performance. In analyzing the parameters to measure the performance of a plot of intersection in Indonesia, it is guided by the 1997 Indonesian Road Capacity Manual. For this reason, this study aims to develop laboratory diagnostics at plot intersections to analyze parameters that can affect the performance of an intersection. The research method used is research and development. The laboratory diagnosis includes anamnesis, differential diagnosis, inspection, diagnosis, prognosis, specimens, analysis and sample data analysts. It is expected that this research can encourage the development and application of laboratory diagnostics at a plot of intersection in Indonesia so that intersections can function optimally.

Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading

Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement.

Assessment of Aminopolyether on 18F-FDG Samples

The quality control procedures of a radiopharmaceutical include the assessment of its chemical purity. The method suggested by international pharmacopeias consists of a thin layer chromatographic run. In this paper, the method proposed by the United States Pharmacopeia (USP) is compared to a direct method to determine the final concentration of aminopolyether in Fludeoxyglucose (18F-FDG) preparations. The approach (no chromatographic run) was achieved by placing the thin-layer chromatography (TLC) plate directly on an iodine vapor chamber. Both methods were validated and they showed adequate results to determine the concentration of aminopolyether in 18F-FDG preparations. However, the direct method is more sensitive, faster and simpler when compared to the reference method (with chromatographic run), and it may be chosen for use in routine quality control of 18F-FDG.