The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling

Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.

A Study on the Application of TRIZ to CAD/CAM System

This study created new graphical icons and operating functions in a CAD/CAM software system by analyzing icons in some of the popular systems, such as AutoCAD, AlphaCAM, Mastercam and the 1st edition of LiteCAM. These software systems all focused on geometric design and editing, thus how to transmit messages intuitively from icon itself to users is an important function of graphical icons. The primary purpose of this study is to design innovative icons and commands for new software. This study employed the TRIZ method, an innovative design method, to generate new concepts systematically. Through literature review, it then investigated and analyzed the relationship between TRIZ and idea development. Contradiction Matrix and 40 Principles were used to develop an assisting tool suitable for icon design in software development. We first gathered icon samples from the selected CAD/CAM systems. Then grouped these icons by meaningful functions, and compared useful and harmful properties. Finally, we developed new icons for new software systems in order to avoid intellectual property problem.