Parameters Influencing Human-Machine Interaction in Hospitals

Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedback helps identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled. 

Migrant Women English Instructors’ Transformative Workplace Learning Experiences in Post-Secondary English Language Programs in Ontario, Canada

This study aims to reveal migrant women English instructors' workplace learning experiences in Canadian post-secondary institutions in Ontario. Migrant women English instructors in higher education are an understudied group of teachers. This study employs a qualitative research paradigm. Mezirow’s Transformative Learning Theory is an essential lens for the researcher to explain, analyze, and interpret the research data. It is a collaborative research project. The researcher and participants cooperatively create photographic or other artwork data responding to the research questions. Photovoice and arts-informed data collection methodology are the main methods. Research participants engage in the study as co-researchers and inquire about their own workplace learning experiences, actively utilizing their critical self-reflective and dialogic skills. Co-researchers individually select the forms of artwork they prefer to engage with to represent their transformative workplace learning experiences about the Canadian workplace cultures that they underwent while working with colleagues and administrators in the workplace. Once the co-researchers generate their cultural artifacts as research data, they collaboratively interpret their artworks with the researcher and other volunteer co-researchers. Co-researchers jointly investigate the themes emerging from the artworks. They also interpret the meanings of their own and others’ workplace learning experiences embedded in the artworks through interactive one-on-one or group interviews. The following are the research questions that the migrant women English instructor participants examine and answer: (1) What have they learned about their workplace culture and how do they explain their learning experiences? (2) How transformative have their learning experiences been at work? (3) How have their colleagues and administrators influenced their transformative learning? (4) What kind of support have they received? What supports have been valuable to them and what changes would they like to see? (5) What have their learning experiences transformed? (6) What has this arts-informed research process transformed? The study findings implicate English language instructor support currently practiced in post-secondary English language programs in Ontario, Canada, especially for migrant women English instructors. This research is a doctoral empirical study in progress. This study has the urgency to address the research problem that few studies have investigated migrant English instructors’ professional learning and support issues in the workplace, precisely that of English instructors working with adult learners in Canada. While appropriate social and professional support for migrant English instructors is required throughout the country, the present workplace realities in Ontario's English language programs need to be heard soon. For that purpose, the conceptualization of this study is crucial. It makes the investigation of under-represented instructors’ under-researched social phenomena, workplace learning and support, viable and rigorous. This paper demonstrates the robust theorization of English instructors’ workplace experiences using Mezirow’s Transformative Learning Theory in the English language teacher education field. 

Learning Objects Content Presentation Adaptation Model Considering Students' Learning Styles

Learning styles (LSs) correspond to the individual preferences of a person regarding the modes and forms in which he/she prefers to learn throughout the teaching/learning process. The content presentation of learning objects (LOs) using knowledge about the students’ LSs offers them digital educational resources tailored to their individual learning preferences. In this context, the most relevant characteristics of the LSs along with the most appropriate forms of LOs' content presentation were mapped and associated. Such was performed in order to define the composition of an adaptive model of LO's content presentation considering the LSs, which was called Adaptation of Content Presentation of Learning Objects Considering Learning Styles (ACPLOLS). LO prototypes were created with interfaces that were adapted to students' LSs. These prototypes were based on a model created for validation of the approaches that were used, which were established through experiments with the students. The results of subjective measures of students' emotional responses demonstrated that the ACPLOLS has reached the desired results in relation to the adequacy of the LOs interface, in accordance with the Felder-Silverman LSs Model.

Military Fighter Aircraft Selection Using Multiplicative Multiple Criteria Decision Making Analysis Method

Multiplicative multiple criteria decision making analysis (MCDMA) method is a systematic decision support system to aid decision makers reach appropriate decisions. The application of multiplicative MCDMA in the military aircraft selection problem is significant for proper decision making process, which is the decisive factor in minimizing expenditures and increasing defense capability and capacity. Nine military fighter aircraft alternatives were evaluated by ten decision criteria to solve the decision making problem. In this study, multiplicative MCDMA model aims to evaluate and select an appropriate military fighter aircraft for the Air Force fleet planning. The ranking results of multiplicative MCDMA model were compared with the ranking results of additive MCDMA, logarithmic MCDMA, and regrettive MCDMA models under the L2 norm data normalization technique to substantiate the robustness of the proposed method. The final ranking results indicate the military fighter aircraft Su-57 as the best available solution.

An Integrated Approach to Child Care Earthquake Preparedness through “Telemachus” Project

A lot of children under the age of five spend their daytime hours away from their home, in a kindergarten. Caring for children is a serious subject, and their safety in case of earthquake is the first priority. Being aware of earthquakes helps to prioritize the needs and take the appropriate actions to limit the effects. Earthquakes occurring anywhere at any time require emergency planning. Earthquake planning is a cooperative effort and childcare providers have unique roles and responsibilities. Greece has high seismicity and Ionian Islands Region has the highest seismic activity of the country. Earthquake Planning and Protection Organization (EPPO) is a national organization in Greece. The mission of EPPO is the seismic risk reduction by designing an earthquake management program of mitigation and preparedness. Among other actions EPPO has analyzed the needs and requirements of kindergartens on earthquake protection issues and has designed specific activities to familiarize the day care centers staff being prepared for earthquakes.  This research presents the results of a survey that detects the level of earthquake preparedness of kindergartens in all over the country and Ionian Islands too. A closed-form questionnaire of 20 main questions was developed for the survey in order to detect the aspects of participants concerning the earthquake preparedness actions at individual, family and day care environment level. 2668 questionnaires were gathered from March 2014 to May 2019, and analyzed by EPPO’s Department of Education. Moreover, this paper presents the EPPO’s educational activities targeted to the Ionian Islands Region that implemented in the framework of “Telemachus” Project. To provide safe environment for children to learn, and staff to work is the foremost goal of any State, community and kindergarten. This project is funded under the Priority Axis “Environmental Protection and Sustainable Development” of Operational Plan “Ionian Islands 2014-2020”. It is increasingly accepted that emergency preparedness should be thought of as an ongoing process rather than a one-time activity. Creating an earthquake safe daycare environment that facilitates learning is a challenging task. Training, drills, and update of emergency plan should take place throughout the year at kindergartens to identify any gaps and to ensure the emergency procedures. EPPO will continue to work closely with regional and local authorities to actively address the needs of children and kindergartens before, during and after earthquakes.

Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: A Study of Regeneration Heat Duty

High pressure carbon dioxide (CO2) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO2 concentration, CO2 loading, reboiler power supply and regeneration heat duty to choose the most efficient solution in terms of CO2 removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that PZ in addition to the mixture of PZ and monoethanolamine (MEA) demand the highest regeneration heat duty compared with other studied single and blended amine solutions respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO2 content in the outlet gas, rich-CO2 loading and regeneration heat duty.

Battery Grading Algorithm in 2nd-Life Repurposing Li-ion Battery System

This article presents a methodology that improves reliability and cyclability of 2nd-life Li-ion battery system repurposed as energy storage system (ESS). Most of the 2nd-life retired battery systems in market have module/pack-level state of health (SOH) indicator, which is utilized for guiding appropriate depth of discharge (DOD) in the application of ESS. Due to the lack of cell-level SOH indication, the different degrading behaviors among various cells cannot be identified upon reaching retired status; in the end, considering end of life (EOL) loss and pack-level DOD, the repurposed ESS has to be oversized by > 1.5 times to complement the application requirement of reliability and cyclability. This proposed battery grading algorithm, using non-invasive methodology, is able to detect outlier cells based on historical voltage data and calculate cell-level historical maximum temperature data using semi-analytic methodology. In this way, the individual battery cell in the 2nd-life battery system can be graded in terms of SOH on basis of the historical voltage fluctuation and estimated historical maximum temperature variation. These grades will have corresponding DOD grades in the application of the repurposed ESS to enhance the system reliability and cyclability. In all, this introduced battery grading algorithm is non-invasive, compatible with all kinds of retired Li-ion battery systems which lack of cell-level SOH indication, as well as potentially being embedded into battery management software for preventive maintenance and real-time cyclability optimization.

The Art of Leadership: Skills to Inspire the Team to Overcome Project Challenges and Achieve Their Goals

This paper highlights skills that a leader needs to acquire to lead a team successfully. With an appropriate vision and strategy, a team can be inspired, influenced and easily led. The importance of setting codes of conduct and establishing mutual agreements between the team members can help in minimizing issues and improving overall productivity. Leadership skills include the power of questioning (PoQ), effective communication, identification of team member responsibilities, and assessment of self and the team. This paper will highlight the impact of good leadership on work progress and overall team performance. The paper explains how leaders make correct decisions by avoiding hasty actions that could generate new errors, mistakes, and issues. The importance of positive expectations for the team is addressed in this paper that could result in efficient control of the work with better outcomes.

Adaptive Few-Shot Deep Metric Learning

Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform

The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.

Experimental Study on the Variation of Young's Modulus of Hollow Clay Brick Obtained from Static and Dynamic Tests

In parallel with the appearance of new materials, brick masonry had and still has an essential part of the construction market today, with new technical challenges in designing bricks to meet additional requirements. Being used in structural applications, predicting the performance of clay brick masonry allows a significant cost reduction, in terms of practical experimentation. The behavior of masonry walls depends on the behavior of their elementary components, such as bricks, joints, and coatings. Therefore, it is necessary to consider it at different scales (from the scale of the intrinsic material to the real scale of the wall) and then to develop appropriate models, using numerical simulations. The work presented in this paper focuses on the mechanical characterization of the terracotta material at ambient temperature. As a result, the static Young’s modulus obtained from the flexural test shows different values in comparison with the compression test, as well as with the dynamic Young’s modulus obtained from the Impulse excitation of vibration test. Moreover, the Young's modulus varies according to the direction in which samples are extracted, where the values in the extrusion direction diverge from the ones in the orthogonal directions. Based on these results, hollow bricks can be considered as transversely isotropic bimodulus material.

A Review and Comparative Analysis on Cluster Ensemble Methods

Clustering is an unsupervised learning technique for aggregating data objects into meaningful classes so that intra cluster similarity is maximized and inter cluster similarity is minimized in data mining. However, no single clustering algorithm proves to be the most effective in producing the best result. As a result, a new challenging technique known as the cluster ensemble approach has blossomed in order to determine the solution to this problem. For the cluster analysis issue, this new technique is a successful approach. The cluster ensemble's main goal is to combine similar clustering solutions in a way that achieves the precision while also improving the quality of individual data clustering. Because of the massive and rapid creation of new approaches in the field of data mining, the ongoing interest in inventing novel algorithms necessitates a thorough examination of current techniques and future innovation. This paper presents a comparative analysis of various cluster ensemble approaches, including their methodologies, formal working process, and standard accuracy and error rates. As a result, the society of clustering practitioners will benefit from this exploratory and clear research, which will aid in determining the most appropriate solution to the problem at hand.

Manual Pit Emptiers and Their Heath: Profiles, Determinants and Interventions

The global sanitation workforce bridges the gap between sanitation infrastructure and the provision of sanitation services through essential public service work. Manual pit emptiers often perform the work at the cost of their dignity, safety, and health as their work requires repeated heavy physical activities such as lifting, carrying, pulling, and pushing. This exposes them to occupational and environmental health hazards and risking illness, injury, and death. The study will extend the studies by presenting occupational health risks and suggestions for improvement in informal settlements of Nairobi, Kenya. This is a qualitative study conducted among sanitation stakeholders in Korogocho, Mukuru and Kibera informal settlements in Nairobi. Data were captured using digital voice recorders, transcribed and thematically analysed. The discussion notes were further supported by observational notes made during the interviews. These formed the basis for a robust picture of occupational health of manual pit emptiers; a lack or inappropriate use of protective clothing, and prolonged duration of working hours were described to contribute to the occupational health hazard. To continue working, manual pit emptiers had devised coping strategies which include working in groups, improvised protective clothing, sharing the available protective clothing, working at night and consuming alcohol drinks while at work. Many of these strategies are detrimental to their health. Occupational health hazards among pit emptiers are key for effective working and is as a result of a lack of collaboration amongst stakeholders linked to health, safety and lack of PPE of pit emptiers. Collaborations amongst sanitation stakeholders is paramount for health, safety, and in ensuring the provision and use of personal protective devices.

Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Shaking Force Balancing of Mechanisms: An Overview

The balancing of mechanisms is a well-known problem in the field of mechanical engineering because the variable dynamic loads cause vibrations, as well as noise, wear and fatigue of the machines. A mechanical system with unbalance shaking force and shaking moment transmits substantial vibration to the frame. Therefore, the objective of the balancing is to cancel or reduce the variable dynamic reactions transmitted to the frame. The resolution of this problem consists in the balancing of the shaking force and shaking moment. It can be fully or partially, by internal mass redistribution via adding counterweights or by modification of the mechanism's architecture via adding auxiliary structures. The balancing problems are of continue interest to researchers. Several laboratories around the world are very active in this area and new results are published regularly. However, despite its ancient history, mechanism balancing theory continues to be developed and new approaches and solutions are constantly being reported. Various surveys have been published that disclose particularities of balancing methods. The author believes that this is an appropriate moment to present a state of the art of the shaking force balancing studies completed by new research results. This paper presents an overview of methods devoted to the shaking force balancing of mechanisms, as well as the historical aspects of the origins and the evolution of the balancing theory of mechanisms.

Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Head of the Class: A Study of What United States Journalism School Administrators Consider the Most Valuable Educational Tenets for Their Graduates Seeking Careers at U.S. Legacy Newspapers

In a time period populated by legacy newspaper readers who throw around the term “fake news” as though it has long been a part of the lexicon, journalism schools must convince would-be students that their degree is still viable and that they are not teaching a curriculum of deception. As such, journalism schools’ academic administrators tasked with creating and maintaining conversant curricula must stay ahead of legacy newspaper industry trends – both in the print and online products – and ensure that what is being taught in the classroom is both fresh and appropriate to the demands of the evolving legacy newspaper industry. This study examines the information obtained from the result of interviews of journalism academic administrators in order to identify institutional pedagogy for recent journalism school graduates interested in pursuing careers at legacy newspapers. This research also explores the existing relationship between journalism school academic administrators and legacy newspaper editors. The results indicate the value administrators put on various academy teachings, and they also highlight a perceived disconnect between journalism academic administrators and legacy newspaper hiring editors.

Management Prospects of Winery By-Products Based on Phenolic Compounds and Antioxidant Activity of Grape Skins: The Case of Greek Ionian Islands

The aim of this work was to recover phenolic compounds from grape skins produced in Greek varieties of the Ionian Islands in order to form the basis of calculations for their further utilization in the context of the circular economy. Isolation and further utilization of phenolic compounds is an important issue in winery by-products. For this purpose, 37 samples were collected, extracted, and analyzed in an attempt to provide the appropriate basis for their sustainable exploitation. Extraction of the bioactive compounds was held using an eco-friendly, non-toxic, and highly effective water-glycerol solvent system. Then, extracts were analyzed using UV-Vis, liquid chromatography-mass spectrometry (LC-MS), FTIR, and Raman spectroscopy. Also, total phenolic content and antioxidant activity were measured. LC-MS chromatography showed qualitative differences between different varieties. Peaks were attributed to monomeric 3-flavanols as well as monomeric, dimeric, and trimeric proanthocyanidins. The FT-IR and Raman spectra agreed with the chromatographic data and contributed to identifying phenolic compounds. Grape skins exhibited high total phenolic content (TPC), and it was proved that during vinification, a large number of polyphenols remained in the pomace. This study confirmed that grape skins from Ionian Islands are a promising source of bioactive compounds, suggesting their utilization under a bio-economic and environmental strategic framework.

An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts

There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.

Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece

Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.