Pollution Induced Community Tolerance(PICT) of Microorganisms in Soil Incubated with Different Levels of PB

Soil microbial activity is adversely affected by pollutants such as heavy metals, antibiotics and pesticides. Organic amendments including sewage sludge, municipal compost and vermicompost are recently used to improve soil structure and fertility. But, these materials contain heavy metals including Pb, Cd, Zn, Ni and Cu that are toxic to soil microorganisms and may lead to occurrence of more tolerant microbes. Among these, Pb is the most abundant and has more negative effect on soil microbial ecology. In this study, Pb levels of 0, 100, 200, 300, 400 and 500 mg Pb [as Pb(NO3)2] per kg soil were added to the pots containing 2 kg of a loamy soil and incubated for 6 months at 25°C with soil moisture of - 0.3 MPa. Dehydrogenase activity of soil as a measure of microbial activity was determined on 15, 30, 90 and 180 days after incubation. Triphenyl tetrazolium chloride (TTC) was used as an electron acceptor in this assay. PICTs (€IC50 values) were calculated for each Pb level and incubation time. Soil microbial activity was decreased by increasing Pb level during 30 days of incubation but the induced tolerance appeared on day 90 and thereafter. During 90 to 180 days of incubation, the PICT was gradually developed by increasing Pb level up to 200 mg kg-1, but the rate of enhancement was steeper at higher concentrations.

In Silico Analysis of Pax6 Interacting Proteins Indicates Missing Molecular Links in Development of Brain and Associated Disease

The PAX6, a transcription factor, is essential for the morphogenesis of the eyes, brain, pituitary and pancreatic islets. In rodents, the loss of Pax6 function leads to central nervous system defects, anophthalmia, and nasal hypoplasia. The haplo-insufficiency of Pax6 causes microphthalmia, aggression and other behavioral abnormalities. It is also required in brain patterning and neuronal plasticity. In human, heterozygous mutation of Pax6 causes loss of iris [aniridia], mental retardation and glucose intolerance. The 3- deletion in Pax6 leads to autism and aniridia. The phenotypes are variable in peneterance and expressivity. However, mechanism of function and interaction of PAX6 with other proteins during development and associated disease are not clear. It is intended to explore interactors of PAX6 to elucidated biology of PAX6 function in the tissues where it is expressed and also in the central regulatory pathway. This report describes In-silico approaches to explore interacting proteins of PAX6. The models show several possible proteins interacting with PAX6 like MITF, SIX3, SOX2, SOX3, IPO13, TRIM, and OGT. Since the Pax6 is a critical transcriptional regulator and master control gene of eye and brain development it might be interacting with other protein involved in morphogenesis [TGIF, TGF, Ras etc]. It is also presumed that matricelluar proteins [SPARC, thrombospondin-1 and osteonectin etc] are likely to interact during transport and processing of PAX6 and are somewhere its cascade. The proteins involved in cell survival and cell proliferation can also not be ignored.

Fast Factored DCT-LMS Speech Enhancement for Performance Enhancement of Digital Hearing Aid

Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Cosine Transform Power Normalized Least Mean Square algorithm to improve the SNR and to reduce the convergence rate of the LMS for Sensory neural loss patients. Since it requires only real arithmetic, it establishes the faster convergence rate as compare to time domain LMS and also this transformation improves the eigenvalue distribution of the input autocorrelation matrix of the LMS filter. The DCT has good ortho-normal, separable, and energy compaction property. Although the DCT does not separate frequencies, it is a powerful signal decorrelator. It is a real valued function and thus can be effectively used in real-time operation. The advantages of DCT-LMS as compared to standard LMS algorithm are shown via SNR and eigenvalue ratio computations. . Exploiting the symmetry of the basis functions, the DCT transform matrix [AN] can be factored into a series of ±1 butterflies and rotation angles. This factorization results in one of the fastest DCT implementation. There are different ways to obtain factorizations. This work uses the fast factored DCT algorithm developed by Chen and company. The computer simulations results show superior convergence characteristics of the proposed algorithm by improving the SNR at least 10 dB for input SNR less than and equal to 0 dB, faster convergence speed and better time and frequency characteristics.