Development of 3D Laser Scanner for Robot Navigation

Autonomous robotic systems need an equipment like a human eye for their movement. In this study a 3D laser scanner has been designed and implemented for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper.

Introduction to Techno-Sectoral Innovation System Modeling and Functions Formulating

In recent years ‘technology management and policymaking’ is one of the most important problems in management science. In this field, different generations of innovation and technology management are presented which the earliest one is Innovation System (IS) approach. In a general classification, innovation systems are divided in to 4 approaches: technical, sectoral, regional, and national. There are many researches in relation to each of these approaches in different academic fields. Every approach has some benefits. If two or more approaches hybrid, their benefits would be combined. In addition, according to the sectoral structure of the governance model in Iran, in many sectors, such as information technology, the combination of three other approaches with sectoral approach is essential. Hence, in this paper, combining two IS approaches (technical and sectoral) and using system dynamics, a generic model is presented for a sample of software industry. As a complimentary point, this article is introducing a new hybrid approach called Techno-Sectoral Innovation System. This TSIS model is accomplished by Changing concepts of the ‘functions’-which came from Technological IS literature- and using them into sectoral system as measurable indicators.

A Preliminary Development of Virtual Sightseeing Website for Thai Temples on Rattanakosin Island

Currently, the sources of cultures and tourist attractions are presented in online documentary form only. In order to make them more virtual, the researcher then collected and presented them in the form of Virtual Temple. The prototype, which is a replica of the actual location, was developed to the website and allows people who are interested in Rattanakosin Island can see in form of Panorama Pan View. By this way, anyone can access the data and appreciate the beauty of Rattanakosin Island in the virtual model like the real place. The result from the experiment showed that the levels of the knowledge on Thai temples in Rattanakosin Island increased; moreover, the users were highly satisfied with the systems. It can be concluded that virtual temples can support to publicize Thai arts, cultures and travels, as well as it can be utilized effectively.

Critical Success Factors of Information Technology Projects

Information Technology (IT) is being used by almost all organizations throughout the world. However its success at supporting and improving business is debatable. There is always the risk of IT project failure and studies have proven that a large number of IT projects indeed do fail. There are many components that further the success of IT projects; these have been studied in previous studies. Studies have found the most necessary components for success in software development projects, executive information systems etc. In this study previous literatures that have looked into these success promoting factors have been critically reviewed and analyzed. 15 Critical Success Factors (CSF) of IT projects were enlisted and examined. These factors can be applied to all IT projects and is not specific to a particular type of IT/IS project. A hypothesis was also generated after the evaluation of the factors.

The Aspect of the Human Bias in Decision Making within Quality Management Systems & LEAN Theory

This paper provides a literature review to document the state of the art with respect to handling “human bias” in decision making within the established quality management systems (QMS) and LEAN theory, in the context of shipbuilding. Previous research shows that in shipbuilding there is a huge deviation from the planned man-hours under the project management to the actual man-hours used because of errors in planning and reworks caused by human bias in the information flows, among others. This reduces the efficiency, and increases operational costs. Thus, the research question is how QMS and LEAN handle biases. The findings show the gap in studying the integration of methods to handle human bias in decision making into QMS and lean, not only within shipbuilding, but in general. Theoretical and practical implications are discussed for researchers and practitioners in the areas of decision making, QMS and LEAN, and future research is suggested.

Current Status of Nitrogen Saturation in the Upper Reaches of the Kanna River, Japan

Nitrogen saturation has become one of the serious issues in the field of forest environment. The watershed protection forests located in the downwind hinterland of Tokyo Metropolitan Area are believed to be facing nitrogen saturation. In this study, we carefully focus on the balance of nitrogen between load and runoff. Annual nitrogen load via atmospheric deposition was estimated to 461.1 t-N/year in the upper reaches of the Kanna River. Annual nitrogen runoff to the forested headwater stream of the Kanna River was determined to 184.9 t-N/year, corresponding to 40.1% of the total nitrogen load. Clear seasonal change in NO3-N concentration was still observed. Therefore, watershed protection forest of the Kanna River is most likely to be in Stage-1 on the status of nitrogen saturation.

An Integrated Supply Chain Management to Manufacturing Industries

Manufacturers have been exploring innovative strategies to achieve and sustain competitive advantages as they face a new era of intensive global competition. Such strategy is known as Supply Chain Management (SCM), which has gained a tremendous amount of attention from both researchers and practitioners over the last decade. Supply chain management (SCM) is considered as the most popular operating strategy for improving organizational competitiveness in the twenty-first century. It has attracted a lot of attention recently due to its role involving all of the activities in industrial organizations, ranging from raw material procurement to final product delivery to customers. Well-designed supply chain systems can substantially improve efficiency and product quality, and eventually enhance customer satisfaction and profitability. In this paper, a manufacturing engineering perspective on supply chain integration is presented. Research issues discussed include the product and process design for the supply chain, design evaluation of manufacturing in the supply chain, agent-based techniques for supply chain integration, intelligent information for sharing across the supply chain, and a development of standards for product, process, and production data exchange to facilitate electronic commerce. The objective is to provide guidelines and references for manufacturing engineers and researchers interested in supply chain integration.

Enterprise Infrastructure Related to the Product Value Transferred from Intellectual Capital

The paper proposed a new theory of intellectual capital (so called IC) and a value approach in associated with production and market. After an in-depth review and research analysis of leading firms in this field, a holistic intellectual capital model is discussed, which involves transport, delivery supporting, and interface and systems of on intellectual capital. Through a quantity study, it is found that there is a significant relationship between the product value and infrastructure in a company. The product values are transferred from intellectual capital elements which includes three elements of content and the enterprise includes three elements of infrastructure in its market and product values of enterprise. 

An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks

An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.

Numerical Investigation of Indoor Air Quality and Thermal Comfort in a Ventilated Room

Understanding the behavior of airflow in a room is essential for building designers to provide the most efficient design of ventilation system, and having acceptable indoor air quality. This trend is the motive to solve the relationship between airflow parameters and thermal comfort. This paper investigates airflow characteristics, indoor air quality (IAQ), and the thermal comfort (TC) in a ventilated room with a displacement ventilation system using three dimensional CFD code [AirPak 2.0.6]. After validation of the code, a numerical study is executed for a typical room with dimensions of 5m by 3m by 3m height according to a variety of supply air velocities, supply air temperature and supply air relative humidity. The finite volume method and the indoor zero equation turbulence models are employed for solving the governing equations numerically. The temperature field and the mean age of air (MAA) in the modeled room for a displacement ventilation system are determined according to a variety of the above parameters. The variable air volume (VAV) systems with different supply air velocity are applicable to control room air temperature for a displacement ventilation system.

Disturbance Observer-Based Predictive Functional Critical Control of a Table Drive System

This paper addresses a control system design for a table drive system based on the disturbance observer (DOB)-based predictive functional critical control (PFCC). To empower the previously developed DOB-based PFC to handle constraints on controlled outputs, we propose to take a critical control approach. To this end, we derive the transfer function representation of the PFC controller and yield a detailed design procedure. The effectiveness of the proposed method is confirmed through an experimental evaluation.

Exploiting Non Circularity for Angle Estimation in Bistatic MIMO Radar Systems

The traditional second order statistics approach of using only the hermitian covariance for non circular signals, does not take advantage of the information contained in the complementary covariance of these signals. Radar systems often use non circular signals such as Binary Phase Shift Keying (BPSK) signals. Their noncicular property can be exploited together with the dual centrosymmetry of the bistatic MIMO radar system to improve angle estimation performance. We construct an augmented matrix from the received data vectors using both the positive definite hermitian covariance matrix and the complementary covariance matrix. The Unitary ESPRIT technique is then applied to the signal subspace of the augmented covariance matrix for automatically paired Direction-of-arrival (DOA) and Direction-of-Departure (DOD) angle estimates. The number of targets that can be detected is twice that obtainable with the conventional ESPRIT approach. Simulation results show the effectiveness of this method in terms of increase in resolution and the number of targets that can be detected.

Security Model of a Unified Communications and Integrated Collaborations System in the Health Sector Environment of Developing Countries: A Case of Uganda

Access to information holds the key to the empowerment of everybody despite where they are living. This research has been carried out in respect of the people living in developing countries, considering their plight and complex geographical, demographic, social-economic conditions surrounding the areas they live, which hinder access to information and of professionals providing services such as medical workers, which has led to high death rates and development stagnation. Research on Unified Communications and Integrated Collaborations (UCIC) system in the health sector of developing countries aims at creating a possible solution of bridging the digital canyon among the communities. The system is meant to deliver services in a seamless manner to assist health workers situated anywhere to be accessed easily and access information which will enhance service delivery. The proposed UCIC provides the most immersive telepresence experience for one-to-one or many-to-many meetings. Extending to locations anywhere in the world, the transformative platform delivers Ultra-low operating costs through the use of general purpose networks and using special lenses and track systems. The essence of this study is to create a security model for the deployment of the UCIC system in the health sector of developing countries. The model approach used for building the UCIC system security carefully considers the specific requirements for the health sector environment organization such as data centre, national, regional and district hospitals, and health centers IV, III, II and I and then builds the single best possible secure network to meet their needs. The security model demonstrates on how the components of the UCIC system will be protected physically and logically in the health sector environment. The UCIC system once adopted and implemented correctly will bring enhancement to the speed and quality of services offered by health workers. The capacities of UCIC will help health workers shorten decision cycles, accelerate service delivery and save lives by speeding access to information and by making it possible for all health workers and patients to collaborate ubiquitously.

Application of Soft Systems Methodology in Solving Disaster Emergency Logistics Problems

In recent years, many high intensity earthquakes have occurred around the world, such as the 2011 earthquake in Tohoku, Japan. These large-scale disasters caused huge casualties and losses. In addition, inefficient disaster response operations also caused the second wave of casualties and losses, and expanded the damage. Effective disaster management can be used to respond to the chaotic situation, and reduce the damage; however, some inefficient disaster response operations are still used. Therefore, this case study chose the 921 earthquake for analyzing disaster emergency logistics problems and proposed the Soft Systems Methodology (SSM) to solve disaster emergency logistics problems. Moreover, it analyses the effect of human factors on system operation, and suggests a solution to improve the system.

Low Cost IMU \ GPS Integration Using Kalman Filtering for Land Vehicle Navigation Application

Land vehicle navigation system technology is a subject of great interest today. Global Positioning System (GPS) is a common choice for positioning in such systems. However, GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation is the implementation of inertial sensors to determine the position and orientation of a vehicle. As such, inertial navigation has unbounded error growth since the error accumulates at each step. Thus in order to contain these errors some form of external aiding is required. The availability of low cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop Inertial Navigation System (INS) using an inertial measurement unit (IMU), in conjunction with GPS to fulfill the demands of such systems. Typically IMU’s are very expensive systems; however this INS will use “low cost” components. Unfortunately with low cost also comes low performance and is the main reason for the inclusion of GPS and Kalman filtering into the system. The aim of this paper is to develop a GPS/MEMS INS integrated system, which is able to provide a navigation solution with accuracy levels appropriate for land vehicle navigation. The primary piece of equipment used was a MEMS-based Crista IMU (from Cloud Cap Technology Inc.) and a Garmin GPS 18 PC (which is both a receiver and antenna). The integration of GPS with INS can be implemented using a Kalman filter in loosely coupled mode. In this integration mode the INS error states, together with any navigation state (position, velocity, and attitude) and other unknown parameters of interest, are estimated using GPS measurements. All important equations regarding navigation are presented along with discussion.

Global Chaos Synchronization of Identical and Nonidentical Chaotic Systems Using Only Two Nonlinear Controllers

In chaos synchronization, the main goal is to design such controller(s) that synchronizes the states of master and slave system asymptotically globally. This paper studied and investigated the synchronization problem of two identical Chen, and identical Tigan chaotic systems and two non-identical Chen and Tigan chaotic systems using Non-linear active control algorithm. In this study, based on Lyapunov stability theory and using non-linear active control algorithm, it has been shown that the proposed schemes have excellent transient performance using only two nonlinear controllers and have shown analytically as well as graphically that synchronization is asymptotically globally stable.

Dynamic Analysis of Reduced Order Large Rotating Vibro-Impact Systems

Large rotating systems, especially gear drives and gearboxes, occur as parts of many mechanical devices transmitting the torque with relatively small loss of power. With the increased demand for high speed machinery, mathematical modeling and dynamic analysis of gear drives gained importance. Mathematical description of such mechanical systems is a complex task evolving for several decades. In gear drive dynamic models, which include flexible shafts, bearings and gearing and use the finite elements, nonlinear effects due to gear mesh and bearings are usually ignored, for such models have large number of degrees of freedom (DOF) and it is computationally expensive to analyze nonlinear systems with large number of DOF. Therefore, these models are not suitable for simulation of nonlinear behavior with amplitude jumps in frequency response. The contribution uses a methodology of nonlinear large rotating system modeling which is based on degrees of freedom (DOF) number reduction using modal synthesis method (MSM). The MSM enables significant DOF number reduction while keeping the nonlinear behavior of the system in a specific frequency range. Further, the MSM with DOF number reduction is suitable for including detail models of nonlinear couplings (mainly gear and bearing couplings) into the complete gear drive models. Since each subsystem is modeled separately using different FEM systems, it is advantageous to parameterize models of subsystems and to use the parameterization for optimization of chosen design parameters. Final complex model of gear drive is assembled in MATLAB and MATLAB tools are used for dynamical analysis of the nonlinear system. The contribution is further focused on developing of a methodology for investigation of behavior of the system by Nonlinear Normal Modes with combination of the MSM using numerical continuation method. The proposed methodology will be tested using a two-stage gearbox including its housing.

IS Flexibility Planning for IT/Business Strategy Alignment via Future Oriented POC Analysis

Nowadays, IT/Business strategy alignment is still a key topic of concern among managers worldwide. Change has always being considered the primary challenge affecting the strategy alignment. Planning for alignment in uncertain and dynamic changing environments is burdened with risk as organizations seek to understand how much flexibility to build in their management information system so as to maintain high levels of alignment. The literature review showed that there is a tight relationship between IT infrastructure flexibility and the strategy alignment with strategic information systems (SIS) planning serving as a moderator of this relationship, and that emphasized the needs for organizations to use SIS planning consistently and to monitor the relationship between IS flexibility and the alignment. This paper presents the procedure of SIS planning with IS flexibility renovation via future oriented analysis of POC (penalty of change) as a function of cost and time. Using this SIS planning and monitoring IS flexibility and the alignment during periods of increased change in dynamic and uncertain environments reduces the risk that could transform IT into an inhibitor rather than an enabler of change.

STATCOM based Damping Controller in Power Systems for Enhance the Power System Stability

This paper describes the power-system stability improvement by a static synchronous compensator (STATCOM) based damping controller with Differential evolution (DE) algorithm is used to find out the optimal controller parameters. The present study considered both local and remote signals with associated time delays. The performances of the proposed controllers have been compared with different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. To show the effectiveness and robustness of the proposed controller the Simulation results are presented under different disturbances and loading conditions.

On the Joint Optimization of Performance and Power Consumption in Data Centers

We model the process of a data center as a multi- objective problem of mapping independent tasks onto a set of data center machines that simultaneously minimizes the energy consump¬tion and response time (makespan) subject to the constraints of deadlines and architectural requirements. A simple technique based on multi-objective goal programming is proposed that guarantees Pareto optimal solution with excellence in convergence process. The proposed technique also is compared with other traditional approach. The simulation results show that the proposed technique achieves superior performance compared to the min-min heuristics, and com¬petitive performance relative to the optimal solution implemented in UNDO for small-scale problems.