A Complexity-Based Approach in Image Compression using Neural Networks

In this paper we present an adaptive method for image compression that is based on complexity level of the image. The basic compressor/de-compressor structure of this method is a multilayer perceptron artificial neural network. In adaptive approach different Back-Propagation artificial neural networks are used as compressor and de-compressor and this is done by dividing the image into blocks, computing the complexity of each block and then selecting one network for each block according to its complexity value. Three complexity measure methods, called Entropy, Activity and Pattern-based are used to determine the level of complexity in image blocks and their ability in complexity estimation are evaluated and compared. In training and evaluation, each image block is assigned to a network based on its complexity value. Best-SNR is another alternative in selecting compressor network for image blocks in evolution phase which chooses one of the trained networks such that results best SNR in compressing the input image block. In our evaluations, best results are obtained when overlapping the blocks is allowed and choosing the networks in compressor is based on the Best-SNR. In this case, the results demonstrate superiority of this method comparing with previous similar works and JPEG standard coding.

Micro-Controller Based Oxy-Fuel Profile Cutting System

In today-s era of plasma and laser cutting, machines using oxy-acetylene flame are also meritorious due to their simplicity and cost effectiveness. The objective to devise a Computer controlled Oxy-Fuel profile cutting machine arose from the increasing demand for metal cutting with respect to edge quality, circularity and lesser formation of redeposit material. The System has an 8 bit micro controller based embedded system, which assures stipulated time response. A new window based Application software was devised which takes a standard CAD file .DXF as input and converts it into numerical data required for the controller. It uses VB6 as a front end whereas MS-ACCESS and AutoCAD as back end. The system is designed around AT89C51RD2, powerful 8 bit, ISP micro controller from Atmel and is optimized to achieve cost effectiveness and also maintains the required accuracy and reliability for complex shapes. The backbone of the system is a cleverly designed mechanical assembly along with the embedded system resulting in an accuracy of about 10 microns while maintaining perfect linearity in the cut. This results in substantial increase in productivity. The observed results also indicate reduced inter laminar spacing of pearlite with an increase in the hardness of the edge region.

Position Vector of a Partially Null Curve Derived from a Vector Differential Equation

In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.

Hybridizing Genetic Algorithm with Biased Chance Local Search

This paper explores university course timetabling problem. There are several characteristics that make scheduling and timetabling problems particularly difficult to solve: they have huge search spaces, they are often highly constrained, they require sophisticated solution representation schemes, and they usually require very time-consuming fitness evaluation routines. Thus standard evolutionary algorithms lack of efficiency to deal with them. In this paper we have proposed a memetic algorithm that incorporates the problem specific knowledge such that most of chromosomes generated are decoded into feasible solutions. Generating vast amount of feasible chromosomes makes the progress of search process possible in a time efficient manner. Experimental results exhibit the advantages of the developed Hybrid Genetic Algorithm than the standard Genetic Algorithm.

A Low-Voltage Current-Mode Wheatstone Bridge using CMOS Transistors

This paper presents a new circuit arrangement for a current-mode Wheatstone bridge that is suitable for low-voltage integrated circuits implementation. Compared to the other proposed circuits, this circuit features severe reduction of the elements number, low supply voltage (1V) and low power consumption (

Combining Bagging and Boosting

Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using a voting methodology of bagging and boosting ensembles with 10 subclassifiers in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-classifiers, as well as other well known combining methods, on standard benchmark datasets and the proposed technique was the most accurate.

Neural Networks Learning Improvement using the K-Means Clustering Algorithm to Detect Network Intrusions

In the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a back propagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset.

Assessment of Cadmium Level in Water from Watershed of the Kowsar Dam

The Kowsar dam supply water for different usages such as drinking, industrial, agricultural and aquaculture farms usages and located next to the city of Dehdashat in Kohgiluye and Boyerahmad province in southern Iran. There are some towns and villages on the Kowsar dam watersheds, which Dehdasht and Choram are the most important and populated cities in this area. The study was undertaken to assess the status of water quality in the urban areas of the Kowsar dam. A total of 28 water samples were collected from 6 stations on surface water and 1 station from groundwater on the watershed of the Kowsar dam. All the samples were analyzed for Cd concentration using standard procedures. The results were compared with other national and international standards. Among the analyzed samples, as the maximum value of cadmium (1.131 μg/L) was observed on the station 2 at the winter 2009, all the samples analyzed were within the maximum admissible limits by the United States Environmental Protection Agency, EU, WHO, New Zealand , Australian, Iranian, and the Indian standards. In general results of the present study have shown that Cd mean values of stations No. 4, 1 and 2 with 0.5135, 0.0.4733 and 0.4573 μg/L respectively are higher than the other stations . Although Cd level of all samples and stations have had normal values but this is an indication of pollution potential and hazards because of human activity and waste water of towns in the areas, which can effect on human health implications in future. This research, therefore, recommends the government and other responsible authorities to take suitable improving measures in the Kowsar dam watershed-s.

Novel Mobile Climbing Robot Agent for Offshore Platforms

To improve HSE standards, oil and gas industries are interested in using remotely controlled and autonomous robots instead of human workers on offshore platforms. In addition to earlier reason this strategy would increase potential revenue, efficient usage of work experts and even would allow operations in more remote areas. This article is the presentation of a custom climbing robot, called Walloid, designed for offshore platform topside automation. This 4 arms climbing robot with grippers is an ongoing project at University of Oslo.

Proposition for a New Approach of Version Control System Based On ECA Active Rules

We try to give a solution of version control for documents in web service, that-s why we propose a new approach used specially for the XML documents. The new approach is applied in a centralized repository, this repository coexist with other repositories in a decentralized system. To achieve the activities of this approach in a standard model we use the ECA active rules. We also show how the Event-Condition-Action rules (ECA rules) have been incorporated as a mechanism for the version control of documents. The need to integrate ECA rules is that it provides a clear declarative semantics and induces an immediate operational realization in the system without the need for human intervention.

Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy

In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding.

Experimental and Numerical Study of A/C Outletsand Its Impact on Room Airflow Characteristics

This paper investigates experimental and numerical study of the airflow characteristics for vortex, round and square ceiling diffusers and its effect on the thermal comfort in a ventilated room. Three different thermal comfort criteria namely; Mean Age of the Air (MAA), ventilation effectiveness (E), and Effective Draft Temperature (EDT) have been used to predict the thermal comfort zone inside the room. In experimental work, a sub-scale room is set-up to measure the temperature field in the room. In numerical analysis, unstructured grids have been used to discretize the numerical domain. Conservation equations are solved using FLUENT commercial flow solver. The code is validated by comparing the numerical results obtained from three different turbulence models with the available experimental data. The comparison between the various numerical models shows that the standard k-ε turbulence model can be used to simulate these cases successfully. After validation of the code, effect of supply air velocity on the flow and thermal field could be investigated and hence the thermal comfort. The results show that the pressure coefficient created by the square diffuser is 1.5 times greater than that created by the vortex diffuser. The velocity decay coefficient is nearly the same for square and round diffusers and is 2.6 times greater than that for the vortex diffuser.

Training Radial Basis Function Networks with Differential Evolution

In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.

Sprayer Boom Active Suspension Using Intelligent Active Force Control

The control of sprayer boom undesired vibrations pose a great challenge to investigators due to various disturbances and conditions. Sprayer boom movements lead to reduce of spread efficiency and crop yield. This paper describes the design of a novel control method for an active suspension system applying proportional-integral-derivative (PID) controller with an active force control (AFC) scheme integration of an iterative learning algorithm employed to a sprayer boom. The iterative learning as an intelligent method is principally used as a method to calculate the best value of the estimated inertia of the sprayer boom needed for the AFC loop. Results show that the proposed AFC-based scheme performs much better than the standard PID control technique. Also, this shows that the system is more robust and accurate.

Sensitivity and Removed THD of a Phase- Cutting Dimmer

In this paper, we consider a designed and implemented phase-cutting dimmer. In fact, the dimmer is closed loop and a microcontroller calculates and then regulates the firing delay angles of each channel. Depending on the firing angle, the harmonic distortion in the input current will not comply with international standards, such as IEC 61000-3-2 (class C equipments). For solving this problem, eight harmonic compensators have been added to the dimmer. So, the proposed dimmer has a little harmonic distortion in the input current whereas conventional phase-cutting dimmers are not so. Sensitivity and removed THD of the proposed dimmer will be presented.

Optimization of Supersonic Ejector via Sequence-Adapted Micro-Genetic Algorithm

In this study, an optimization of supersonic air-to-air ejector is carried out by a recently developed single-objective genetic algorithm based on adaption of sequence of individuals. Adaptation of sequence is based on Shape-based distance of individuals and embedded micro-genetic algorithm. The optimal sequence found defines the succession of CFD-aimed objective calculation within each generation of regular micro-genetic algorithm. A spring-based deformation mutates the computational grid starting the initial individualvia adapted population in the optimized sequence. Selection of a generation initial individual is knowledge-based. A direct comparison of the newly defined and standard micro-genetic algorithm is carried out for supersonic air-to-air ejector. The only objective is to minimize the loose of total stagnation pressure in the ejector. The result is that sequence-adopted micro-genetic algorithm can provide comparative results to standard algorithm but in significantly lower number of overall CFD iteration steps.

Thermal Analysis of Tibetan Vernacular Building - Case of Lhasa

Vernacular building is considered as sustainable in energy consumption and environment and its thermal performance is more and more concerned by researchers. This paper investigates the thermal property of the vernacular building in Lhasa by theoretical analysis on the aspects of building form, envelope and materials etc. The values of thermal resistance and thermal capacity of the envelope are calculated and compared with the current China building code and modern building case. And it is concluded that Lhasa vernacular building meets the current China building code of thermal standards and have better performance in some aspects, which is achieved by various passive means with close response to local climate conditions.

Incentives to Introduce Environmental Management System in the Context of Building an eco-Innovative Potential – A Case of Podkarpackie Voivodeship

This paper shows the results of empirical research. It presents experiences of Polish companies from the Podkarpackie voivodeship connected with implementing EMS according to the requirements of the ISO 14001 international standard. The incentives to introduce and certify organizational eco-innovation, which formal EMSs are treated as, are presented in this paper.

Unsupervised Texture Classification and Segmentation

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.