Variable-Relation Criterion for Analysis of the Memristor

To judge whether the memristor can be interpreted as the fourth fundamental circuit element, we propose a variable-relation criterion of fundamental circuit elements. According to the criterion, we investigate the nature of three fundamental circuit elements and the memristor. From the perspective of variables relation, the memristor builds a direct relation between the voltage across it and the current through it, instead of a direct relation between the magnetic flux and the charge. Thus, it is better to characterize the memristor and the resistor as two special cases of the same fundamental circuit element, which is the memristive system in Chua-s new framework. Finally, the definition of memristor is refined according to the difference between the magnetic flux and the flux linkage.

How Team Efficacy Beliefs Impact Project Performance: An Empirical Investigation of Team Potency in Capital Projects in the Process Industries

Team efficacy beliefs show promise in enhancing team performance. Using a model-based quantitative research design, we investigated the antecedents and performance consequences of generalized team efficacy (potency) in a sample of 56 capital projects executed by 15 Fortune 500 companies in the process industries. Empirical analysis of our field survey identified that generalized team efficacy beliefs were positively associated with an objective measure of project cost performance. Regression analysis revealed that team competence, empowering leadership, and performance feedback all predicted generalized team efficacy beliefs. Tests of mediation revealed that generalized team efficacy fully mediated between these three inputs and project cost performance.

Fatigue Life Consumption for Turbine Blades-Vanes Accelerated by Erosion-Contour Modification

A new mechanism responsible for structural life consumption due to resonant fatigue in turbine blades, or vanes, is presented and explained. A rotating blade or vane in a gas turbine can change its contour due to erosion and/or material build up, in any of these instances, the surface pressure distribution occurring on the suction and pressure sides of blades-vanes can suffer substantial modification of their pressure and temperatures envelopes and flow characteristics. Meanwhile, the relative rotation between the blade and duct vane while the pressurized gas flows and the consequent wake crossings, will induce a fluctuating thrust force or lift that will excite the blade. An actual totally used up set of vane-blade components in a HP turbine power stage in a gas turbine is analyzed. The blade suffered some material erosion mostly at the trailing edge provoking a peculiar surface pressure envelope which evolved as the relative position between the vane and the blade passed in front of each other. Interestingly preliminary modal analysis for this eroded blade indicates several natural frequencies within the aeromechanic power spectrum, moreover, the highest frequency component is 94% of one natural frequency indicating near resonant condition. Independently of other simultaneously occurring fatigue cycles (such as thermal, centrifugal stresses).

Redefining Field Experiences: Virtual Environments in Teacher Education

The explosion of interest in online gaming and virtual worlds is leading many universities to investigate possible educational applications of the new environments. In this paper we explore the possibilities of 3D online worlds for teacher education, particularly the field experience component. Drawing upon two pedagogical examples, we suggest that virtual simulations may, with certain limitations, create safe spaces that allow preservice teachers to adopt alternate identities and interact safely with the “other." In so doing they may become aware of the constructed nature of social categories and gain the essential pedagogical skill of perspective-taking. We suggest that, ultimately, the ability to be the principal creators of themselves in virtual environments can increase their ability to do the same in the real world.

Promoting Collaborative Learning in Software Engineering by Adapting the PBL Strategy

Software engineering education not only embraces technical skills of software development but also necessitates communication and interaction among learners. In this paper, it is proposed to adapt the PBL methodology that is especially designed to be integrated into software engineering classroom in order to promote collaborative learning environment. This approach helps students better understand the significance of social aspects and provides a systematic framework to enhance teamwork skills. The adaptation of PBL facilitates the transition to an innovative software development environment where cooperative learning can be actualized.

Decreasing of Displacements of Prestressed Cable Truss

Suspended cable structures are most preferable for large spans covering due to rational use of structural materials, but the problem of suspended cable structures is initial shape change under the action of non-symmetrical load. The problem can be solved by increasing of relation of dead weight and imposed load, but this methods cause increasing of materials consumption.Prestressed cable truss usage is another way how the problem of shape change under the action of non-symmetrical load can be fixed. The better results can be achieved if we replace top chord with cable truss with cross web. Rational structure of the cable truss for prestressed cable truss top chord was developed using optimization realized in FEM program ANSYS 12 environment. Single cable and cable truss model work was discovered.Analytical and model testing results indicate, that usage of cable truss with the cross web as a top chord of prestressed cable truss instead of single cable allows to reduce total displacements by 13-16% in the case of non-symmetrical load. In case of uniformly distributed load single cable is preferable.

A PSO-Based Optimum Design of PID Controller for a Linear Brushless DC Motor

This Paper presents a particle swarm optimization (PSO) method for determining the optimal proportional-integral-derivative (PID) controller parameters, for speed control of a linear brushless DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The brushless DC motor is modelled in Simulink and the PSO algorithm is implemented in MATLAB. Comparing with Genetic Algorithm (GA) and Linear quadratic regulator (LQR) method, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of a linear brushless DC motor.

Train the Trainer: The Bricks in the Learning Community Scaffold of Professional Development

Professional development is the focus of this study. It reports on questionnaire data that examined the perceived effectiveness of the Train the Trainer model of technology professional development for elementary teachers. Eighty-three selected teachers called Information Technology Coaches received four half-day and one after-school in-service sessions. Subsequently, coaches shared the information and skills acquired during training with colleagues. Results indicated that participants felt comfortable as Information Technology Coaches and felt well prepared because of their technological professional development. Overall, participants perceived the Train the Trainer model to be effective. The outcomes of this study suggest that the use of the Train the Trainer model, a known professional development model, can be an integral and interdependent component of the newer more comprehensive learning community professional development model.

Marangoni Instability in a Fluid Layer with Insoluble Surfactant

The Marangoni convective instability in a horizontal fluid layer with the insoluble surfactant and nondeformable free surface is investigated. The surface tension at the free surface is linearly dependent on the temperature and concentration gradients. At the bottom surface, the temperature conditions of uniform temperature and uniform heat flux are considered. By linear stability theory, the exact analytical solutions for the steady Marangoni convection are derived and the marginal curves are plotted. The effects of surfactant or elasticity number, Lewis number and Biot number on the marginal Marangoni instability are assessed. The surfactant concentration gradients and the heat transfer mechanism at the free surface have stabilizing effects while the Lewis number destabilizes fluid system. The fluid system with uniform temperature condition at the bottom boundary is more stable than the fluid layer that is subjected to uniform heat flux at the bottom boundary.

Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification

Classification of electroencephalogram (EEG) signals extracted during mental tasks is a technique that is actively pursued for Brain Computer Interfaces (BCI) designs. In this paper, we compared the classification performances of univariateautoregressive (AR) and multivariate autoregressive (MAR) models for representing EEG signals that were extracted during different mental tasks. Multilayer Perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm was used to classify these features into the different categories representing the mental tasks. Classification performances were also compared across different mental task combinations and 2 sets of hidden units (HU): 2 to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks were studied for each subject. Three different feature extraction methods with 6th order were used to extract features from these EEG signals: AR coefficients computed with Burg-s algorithm (ARBG), AR coefficients computed with stepwise least square algorithm (ARLS) and MAR coefficients computed with stepwise least square algorithm. The best results were obtained with 20 to 100 HU using ARBG. It is concluded that i) it is important to choose the suitable mental tasks for different individuals for a successful BCI design, ii) higher HU are more suitable and iii) ARBG is the most suitable feature extraction method.

The Importance of Theatrical Language in the Creativeness of the Actor

In this article, some methods are mentioned for developing the theatrical language by giving information of “theatrical language" since the arising of the language in obsolete terms, and today, and also by examining the problems. Being able to talk meaningfully in the theater stage is a skillful art. Maybe, to be able to convey the idea of the poet, his/her world outlook and his/her feelings from the bottom of the heart as such, also conveying the speech norms without breaking them to the ear of audience in a fascinating way in adverse of a repellent way is the most difficult one. Because of this, “the word is the mirror of the idea". The importance of the theatrical language should not be perceived as only a post, it is “as the yarn that the culture carpet is weaved from". Thereby, it is a tool which transposes our culture and our life style from generation to generation. At the time of creativeness, the “word" comes out from the poet, “the word and feeling" art comes out from the actor. If it was not so, the audience could read the texts of the work himself/herself instead of going to the theater in order to see the performance. The fundamental works by the Turkish, Kazakh and English scientists have been taken as a basis for the research done.

The Effects of Four Organic Cropping Sequences on Soil Phosphorous Cycling and Arbuscular Mycorrhizal Fungi

Organic farmers across Saskatchewan face soil phosphorus (P) shortages. Due to the restriction on inputs in organic systems, farmers rely on crop rotation and naturally-occurring arbuscular mycorrhizal fungi (AMF) for plant P supply. Crop rotation is important for disease, pest, and weed management. Crops that are not colonized by AMF (non-mycorrhizal) can decrease colonization of a following crop. An experiment was performed to quantify soil P cycling in four cropping sequences under organic management and determine if mustard (non-mycorrhizal) was delaying the colonization of subsequent wheat. Soils from the four cropping sequences were measured for inorganic soil P (Pi), AMF spore density (SD), phospholipid fatty acid analysis (PLFA, for AMF biomarker counts), and alkaline phosphatase activity (ALPase, related to AMF metabolic activity). Plants were measured for AMF colonization and P content and uptake of above-ground biomass. A lack of difference in AMF activity indicated that mustard was not depressing colonization. Instead, AMF colonization was largely determined by crop type and crop rotation.

Analysis of Short Bearing in Turbulent Regime Considering Micropolar Lubrication

The aim of the paper work is to investigate and predict the static performance of journal bearing in turbulent flow condition considering micropolar lubrication. The Reynolds equation has been modified considering turbulent micropolar lubrication and is solved for steady state operations. The Constantinescu-s turbulence model is adopted using the coefficients. The analysis has been done for a parallel and inertia less flow. Load capacity and friction factor have been evaluated for various operating parameters.

Online Collaboration Learning: A Way to Enhance Students' Achievement at Kingdom of Bahrain

The increasing recognition of the need for education to be closely aligned with team playing, project based learning and problem solving approaches has increase the interest in collaborative learning among university and college instructors. Using online collaboration learning in learning can enhance the outcome and achievement of students as well as improve their communication, critical thinking and personnel skills. The current research aims at examining the effect of OCL on the student's achievement at Kingdom of Bahrain. Numbers of objectives were set to achieve the aim of the research include: investigating the current situation regarding the collaborative learning and OCL at the Kingdom of Bahrain by identifying the advantages and effectiveness of OCL as a learning tool over traditional learning, examining the factors that affect OCL as well as examining the impact of OCL on the student's achievement. To achieve these objectives, quantitative method was adopted. Two hundred and thirty one questionnaires were distributed to students in different local and private universities at Kingdom of Bahrain. The findings of the research show that most of the students prefer to use FTFCL in learning and that OCL is already adopted in some universities especially in University of Bahrain. Moreover, the most factors affecting the adopted OCL are perceived readiness, and guidance and support.

Virtual Learning Environments in Spanish Traditional Universities

This communication is intended to provide some issues for thought on the importance of implementation of Blended Learning in traditional universities, particularly in the Spanish university system. In this respect, we believe that virtual environments are likely to meet some of the needs raised by the Bologna agreement, trying to maintain the quality of teaching and at the same time taking advantage of the functionalities that virtual learning platforms offer. We are aware that an approach of learning from an open and constructivist nature in universities is a complex process that faces significant technological, administrative and human barriers. Therefore, in order to put plans in our universities, it is necessary to analyze the state of the art of some indicators relating to the use of ICT, with special attention to virtual teaching and learning, so that we can identify the main obstacles and design adaptive strategies for their full integration in the education system. Finally, we present major initiatives launched in the European and state framework for the effective implementation of new virtual environments in the area of higher education.

Cubic Splines and Fourier Series Approach to Study Temperature Variation in Dermal Layers of Elliptical Shaped Human Limbs

An attempt has been made to develop a seminumerical model to study temperature variations in dermal layers of human limbs. The model has been developed for two dimensional steady state case. The human limb has been assumed to have elliptical cross section. The dermal region has been divided into three natural layers namely epidermis, dermis and subdermal tissues. The model incorporates the effect of important physiological parameters like blood mass flow rate, metabolic heat generation, and thermal conductivity of the tissues. The outer surface of the limb is exposed to the environment and it is assumed that heat loss takes place at the outer surface by conduction, convection, radiation, and evaporation. The temperature of inner core of the limb also varies at the lower atmospheric temperature. Appropriate boundary conditions have been framed based on the physical conditions of the problem. Cubic splines approach has been employed along radial direction and Fourier series along angular direction to obtain the solution. The numerical results have been computed for different values of eccentricity resembling with the elliptic cross section of the human limbs. The numerical results have been used to obtain the temperature profile and to study the relationships among the various physiological parameters.

BDD Package Based on Boolean NOR Operation

Binary Decision Diagrams (BDDs) are useful data structures for symbolic Boolean manipulations. BDDs are used in many tasks in VLSI/CAD, such as equivalence checking, property checking, logic synthesis, and false paths. In this paper we describe a new approach for the realization of a BDD package. To perform manipulations of Boolean functions, the proposed approach does not depend on the recursive synthesis operation of the IF-Then-Else (ITE). Instead of using the ITE operation, the basic synthesis algorithm is done using Boolean NOR operation.

On Modified Numerical Schemes in Vortex Element Method for 2D Flow Simulation Around Airfoils

The problem of incompressible steady flow simulation around an airfoil is discussed. For some simplest airfoils (circular, elliptical, Zhukovsky airfoils) the exact solution is known from complex analysis. It allows to compute the intensity of vortex layer which simulates the airfoil. Some modifications of the vortex element method are proposed and test computations are carried out. It-s shown that the these approaches are much more effective in comparison with the classical numerical scheme.

Gas Detection via Machine Learning

We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.

Unsteady Water Boundary Layer Flow with Non-Uniform Mass Transfer

In the present analysis an unsteady laminar forced convection water boundary layer flow is considered. The fluid properties such as viscosity and Prandtl number are taken as variables such that those are inversely proportional to temperature. By using quasi-linearization technique the nonlinear coupled partial differential equations are linearized and the numerical solutions are obtained by using implicit finite difference scheme with the appropriate selection of step sizes. Non-similar solutions have been obtained from the starting point of the stream-wise coordinate to the point where skin friction value vanishes. The effect non-uniform mass transfer along the surface of the cylinder through slot is studied on the skin friction and heat transfer coefficients.