Array Signal Processing: DOA Estimation for Missing Sensors

Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.

Effect of Body Size and Condition Factor on Whole Body Composition of Hybrid (Catla catla ♂x Labeo rohita ♀) from Pakistan

In the present study, 49 Hybrid (Catla catla ♂ x Labeo rohita ♀) were sampled from Al-Raheem Fish Hatchery, Village Ali Pure Shamali, Jhang Road, 18 Km from Muzaffar Garh using a cast net and Live fishes were transported to research laboratory. Mean percentage for water found 79.13 %, ash 6.58 %, fat 2.22 % and protein content 12.06 % in whole wet body weight. It was observed that body constituents were found increasing in the same proportion with an increase in body weight while significant proportional increase was observed with total length. However, condition factor remained insignificant (P>0.05) with body constituents.

Deep iCrawl: An Intelligent Vision-Based Deep Web Crawler

The explosive growth of World Wide Web has posed a challenging problem in extracting relevant data. Traditional web crawlers focus only on the surface web while the deep web keeps expanding behind the scene. Deep web pages are created dynamically as a result of queries posed to specific web databases. The structure of the deep web pages makes it impossible for traditional web crawlers to access deep web contents. This paper, Deep iCrawl, gives a novel and vision-based approach for extracting data from the deep web. Deep iCrawl splits the process into two phases. The first phase includes Query analysis and Query translation and the second covers vision-based extraction of data from the dynamically created deep web pages. There are several established approaches for the extraction of deep web pages but the proposed method aims at overcoming the inherent limitations of the former. This paper also aims at comparing the data items and presenting them in the required order.

Automatic Visualization Pipeline Formation for Medical Datasets on Grid Computing Environment

Distance visualization of large datasets often takes the direction of remote viewing and zooming techniques of stored static images. However, the continuous increase in the size of datasets and visualization operation causes insufficient performance with traditional desktop computers. Additionally, the visualization techniques such as Isosurface depend on the available resources of the running machine and the size of datasets. Moreover, the continuous demand for powerful computing powers and continuous increase in the size of datasets results an urgent need for a grid computing infrastructure. However, some issues arise in current grid such as resources availability at the client machines which are not sufficient enough to process large datasets. On top of that, different output devices and different network bandwidth between the visualization pipeline components often result output suitable for one machine and not suitable for another. In this paper we investigate how the grid services could be used to support remote visualization of large datasets and to break the constraint of physical co-location of the resources by applying the grid computing technologies. We show our grid enabled architecture to visualize large medical datasets (circa 5 million polygons) for remote interactive visualization on modest resources clients.

Distortion Estimation in Digital Image Watermarking using Genetic Programming

This paper introduces a technique of distortion estimation in image watermarking using Genetic Programming (GP). The distortion is estimated by considering the problem of obtaining a distorted watermarked signal from the original watermarked signal as a function regression problem. This function regression problem is solved using GP, where the original watermarked signal is considered as an independent variable. GP-based distortion estimation scheme is checked for Gaussian attack and Jpeg compression attack. We have used Gaussian attacks of different strengths by changing the standard deviation. JPEG compression attack is also varied by adding various distortions. Experimental results demonstrate that the proposed technique is able to detect the watermark even in the case of strong distortions and is more robust against attacks.

BER Performance of UWB Modulations through S-V Channel Model

BER analysis of Impulse Radio Ultra Wideband (IRUWB) pulse modulations over S-V channel model is proposed in this paper. The UWB pulse is Gaussian monocycle pulse modulated using Pulse Amplitude Modulation (PAM) and Pulse Position Modulation (PPM). The channel model is generated from a modified S-V model. Bit-error rate (BER) is measured over several of bit rates. The result shows that all modulation are appropriate for both LOS and NLOS channel, but PAM gives better performance in bit rates and SNR. Moreover, as standard of speed has been given for UWB, the communication is appropriate with high bit rates in LOS channel.

Fatigue Failure of Structural Steel – Analysis Using Fracture Mechanics

Fatigue is the major threat in service of steel structure subjected to fluctuating loads. With the additional effect of corrosion and presence of weld joints the fatigue failure may become more critical in structural steel. One of the apt examples of such structural is the sailing ship. This is experiencing a constant stress due to floating and a pulsating bending load due to the waves. This paper describes an attempt to verify theory of fatigue in fracture mechanics approach with experimentation to determine the constants of crack growth curve. For this, specimen is prepared from the ship building steel and it is subjected to a pulsating bending load with a known defect. Fatigue crack and its nature is observed in this experiment. Application of fracture mechanics approach in fatigue with a simple practical experiment is conducted and constants of crack growth equation are investigated.

Accelerating Sparse Matrix Vector Multiplication on Many-Core GPUs

Many-core GPUs provide high computing ability and substantial bandwidth; however, optimizing irregular applications like SpMV on GPUs becomes a difficult but meaningful task. In this paper, we propose a novel method to improve the performance of SpMV on GPUs. A new storage format called HYB-R is proposed to exploit GPU architecture more efficiently. The COO portion of the matrix is partitioned recursively into a ELL portion and a COO portion in the process of creating HYB-R format to ensure that there are as many non-zeros as possible in ELL format. The method of partitioning the matrix is an important problem for HYB-R kernel, so we also try to tune the parameters to partition the matrix for higher performance. Experimental results show that our method can get better performance than the fastest kernel (HYB) in NVIDIA-s SpMV library with as high as 17% speedup.

Real-time Performance Study of EPA Periodic Data Transmission

EPA (Ethernet for Plant Automation) resolves the nondeterministic problem of standard Ethernet and accomplishes real-time communication by means of micro-segment topology and deterministic scheduling mechanism. This paper studies the real-time performance of EPA periodic data transmission from theoretical and experimental perspective. By analyzing information transmission characteristics and EPA deterministic scheduling mechanism, 5 indicators including delivery time, time synchronization accuracy, data-sending time offset accuracy, utilization percentage of configured timeslice and non-RTE bandwidth that can be used to specify the real-time performance of EPA periodic data transmission are presented and investigated. On this basis, the test principles and test methods of the indicators are respectively studied and some formulas for real-time performance of EPA system are derived. Furthermore, an experiment platform is developed to test the indicators of EPA periodic data transmission in a micro-segment. According to the analysis and the experiment, the methods to improve the real-time performance of EPA periodic data transmission including optimizing network structure, studying self-adaptive adjustment method of timeslice and providing data-sending time offset accuracy for configuration are proposed.

Preliminary Development of a Hydrogen Peroxide Thruster

Green propellants used for satellite-level propulsion system become attractive in recent years because the non-toxicity and lower requirements of safety protection. One of the green propellants, high-concentration hydrogen peroxide H2O2 solution (≥70% w/w, weight concentration percentage), often known as high-test peroxide (HTP), is considered because it is ITAR-free, easy to manufacture and the operating temperature is lower than traditional monopropellant propulsion. To establish satellite propulsion technology, the National Space Organization (NSPO) in Taiwan has initialized a long-term cooperation project with the National Cheng Kung University to develop compatible tank and thruster. An experimental propulsion payload has been allocated for the future self-reliant satellite to perform orbit transfer and maintenance operations. In the present research, an 1-Newton thruster prototype is designed and the thrusting force is measured by a pendulum-type platform. The preliminary hot-firing test at ambient environment showed the generated thrust and the specific impulse are about 0.7 Newton and 102 seconds, respectively.

Autistic Children and Different Tense Forms

Autism spectrum disorder is characterized by abnormalities in social communication, language abilities and repetitive behaviors. The present study focused on some grammatical deficits in autistic children. We evaluated the impairment of correct use of different Persian verb tenses in autistic children-s speech. Two standardized Language Test were administered then gathered data were analyzed. The main result of this study was significant difference between the mean scores of correct responses to present tense in comparison with past tense in Persian language. This study demonstrated that tense is severely impaired in autistic children-s speech. Our findings indicated those autistic children-s production of simple present/ past tense opposition to be better than production of future and past periphrastic forms (past perfect, present perfect, past progressive).

EEG Spikes Detection, Sorting, and Localization

This study introduces a new method for detecting, sorting, and localizing spikes from multiunit EEG recordings. The method combines the wavelet transform, which localizes distinctive spike features, with Super-Paramagnetic Clustering (SPC) algorithm, which allows automatic classification of the data without assumptions such as low variance or Gaussian distributions. Moreover, the method is capable of setting amplitude thresholds for spike detection. The method makes use of several real EEG data sets, and accordingly the spikes are detected, clustered and their times were detected.

Performance Appraisal System using Multifactorial Evaluation Model

Performance appraisal of employee is important in managing the human resource of an organization. With the change towards knowledge-based capitalism, maintaining talented knowledge workers is critical. However, management classification of “outstanding", “poor" and “average" performance may not be an easy decision. Besides that, superior might also tend to judge the work performance of their subordinates informally and arbitrarily especially without the existence of a system of appraisal. In this paper, we propose a performance appraisal system using multifactorial evaluation model in dealing with appraisal grades which are often express vaguely in linguistic terms. The proposed model is for evaluating staff performance based on specific performance appraisal criteria. The project was collaboration with one of the Information and Communication Technology company in Malaysia with reference to its performance appraisal process.

Investigation of Interference Conditions in BFWA System Applying Adaptive TDD

In a BFWA (Broadband Fixed Wireless Access Network) the evolved SINR (Signal to Interference plus Noise Ratio) is relevant influenced by the applied duplex method. The TDD (Time Division Duplex), especially adaptive TDD method has some advantage contrary to FDD (Frequency Division Duplex), for example the spectrum efficiency and flexibility. However these methods are suffering several new interference situations that can-t occur in a FDD system. This leads to reduced SINR in the covered area what could cause some connection outages. Therefore, countermeasure techniques against interference are necessary to apply in TDD systems. Synchronization is one way to handling the interference. In this paper the TDD systems – applying different system synchronization degree - will be compared by the evolved SINR at different locations of the BFWA service area and the percentage of the covered area by the system.

Dynamic Stability of Beams with Piezoelectric Layers Located on a Continuous Elastic Foundation

This paper studies dynamic stability of homogeneous beams with piezoelectric layers subjected to periodic axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Bernoulli-Euler beam theory. Applying the Hamilton's principle, the governing dynamic equation is established. The influences of applied voltage, foundation coefficient and piezoelectric thickness on the unstable regions are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Context Aware Navigation System for Using Public Transport on Smartphone

Recently, many web services to provide information for public transport are developed and released. They are optimized for mobile devices such a smartphone. We are also developing better path planning system for route buses and trains called “Bus-Net"[1]. However these systems only provide paths and related information before the user start moving. So we propose a context aware navigation to change the way to support public transport users. If we go to somewhere using many kinds of public transport, we have to know how to use them. In addition, public transport is dynamic system, and these have different characteristic by type. So we need information at real-time. Therefore we suggest the system that can support on user-s state. It has a variety of ways to help public transport users by each state, like turn-by-turn navigation. Context aware navigation will be able to reduce anxiety for using public transport.

Knowledge Sharing based on Semantic Nets and Mereology to Avoid Risks in Manufacturing

The right information at the right time influences the enterprise and technical success. Sharing knowledge among members of a big organization may be a complex activity. And as long as the knowledge is not shared, can not be exploited by the organization. There are some mechanisms which can originate knowledge sharing. It is intended, in this paper, to trigger these mechanisms by using semantic nets. Moreover, the intersection and overlapping of terms and sub-terms, as well as their relationships will be described through the mereology science for the whole knowledge sharing system. It is proposed a knowledge system to supply to operators with the right information about a specific process and possible risks, e.g. at the assembly process, at the right time in an automated manufacturing environment, such as at the automotive industry.

Sweet Corn Water Productivity under Several Deficit Irrigation Regimes Applied during Vegetative Growth Stage using Treated Wastewater as Water Irrigation Source

Yield and Crop Water Productivity are crucial issues in sustainable agriculture, especially in high-demand resource crops such as sweet corn. This study was conducted to investigate agronomic responses such as plant growth, yield and soil parameters (EC and Nitrate accumulation) to several deficit irrigation treatments (100, 75, 50, 25 and 0% of ETm) applied during vegetative growth stage, rainfed treatment was also tested. The finding of this research indicates that under deficit irrigation during vegetative growth stage applying 75% of ETm lead to increasing of 19.4% in terms of fresh ear yield, 9.4% in terms of dry grain yield, 10.5% in terms of number of ears per plant, 11.5% for the 1000 grains weight and 19% in terms of crop water productivity compared with fully irrigated treatment. While those parameters in addition to root, shoot and plant height has been affected by deficit irrigation during vegetative growth stage when increasing water stress degree more than 50% of ETm.

Biological Effects of a Carbohydrate-Binding Protein from an Annelid, Perinereis nuntia Against Human and Phytopathogenic Microorganisms

Lectins have a good scope in current clinical microbiology research. In the present study evaluated the antimicrobial activities of a D-galactose binding lectin (PnL) was purified from the annelid, Perinereis nuntia (polychaeta) by affinity chromatography. The molecular mass of the lectin was determined to be 32 kDa as a single polypeptide by SDS-PAGE under both reducing and non-reducing conditions. The hemagglutinating activity of the PnL showed against trypsinized and glutaraldehyde-fixed human erythrocytes was specifically inhibited by D-Gal, GalNAc, Galβ1-4Glc and Galα1-6Glc. PnL was evaluated for in vitro antibacterial screening studies against 11 gram-positive and gram-negative microorganisms. From the screening results, it was revealed that PnL exhibited significant antibacterial activity against gram-positive bacteria. Bacillus megaterium showed the highest growth inhibition by the lectin (250 μg/disc). However, PnL did not inhibit the growth of gram-negative bacteria such as Vibrio cholerae and Pseudomonas sp. PnL was also examined for in vitro antifungal activity against six fungal phytopathogens. PnL (100 μg/mL) inhibited the mycelial growth of Alternaria alternata (24.4%). These results indicate that future findings of lectin applications obtained from annelids may be of importance to life sciences.

Technology Adoption among Small and Medium Enterprises (SME's): A Research Agenda

This paper presents the research agenda that has been proposed to develop an integrated model to explain technology adoption of SMEs in Malaysia. SMEs form over 90% of all business entities in Malaysia and they have been contributing to the development of the nation. Technology adoption has been a thorn issue among SMEs as they require big outlay which might not be available to the SMEs. Although resource has been an issue among SMEs they cannot lie low and ignore the technological advancements that are taking place at a rapid pace. With that in mind this paper proposes a model to explain the technology adoption issue among SMEs.