Analysing and Classifying VLF Transients

Monitoring lightning electromagnetic pulses (sferics) and other terrestrial as well as extraterrestrial transient radiation signals is of considerable interest for practical and theoretical purposes in astro- and geophysics as well as meteorology. Managing a continuous flow of data, automation of the analysis and classification process is important. Features based on a combination of wavelet and statistical methods proved efficient for this task and serve as input into a radial basis function network that is trained to discriminate transient shapes from pulse like to wave like. We concentrate on signals in the Very Low Frequency (VLF, 3 -30 kHz) range in this paper, but the developed methods are independent of this specific choice.

Realignment of f-actin Cytoskeleton in Osteocytes after Mechanical Loading

F-actin fibrils are the cytoskeleton of osteocytes. They react in a dynamic manner to mechanical loading, and strength and reposition their efforts to reinforce the cells structure. We hypothesize that f-actin is temporarly disrupted after loading and repolymerizes in a new orientation to oppose the applied load. In vitro studies are conducted to determine f-actin disruption after varying mechanical stimulus parameters that are known to affect bone formation. Results indicate that the f-actin cytoskeleton is disrupted in vitro as a function of applied mechanical stimulus parameters and that the f-actin bundles reassemble after loading induced disruption within 3 minutes after cessation of loading. The disruption of the factin cytoskeleton depends on the magnitude of stretch, the numbers of loading cycles, frequency, the insertion of rest between loading cycles and extracellular calcium. In vivo studies also demonstrate disruption of the f-actin cytoskeleton in cells embedded in the bone matrix immediately after mechanical loading. These studies suggest that adaptation of the f-actin fiber bundles of the cytoskeleton in response to applied loads occurs by disruption and subsequent repolymerization.

A Hybridized Competency-Based Teacher Candidate Selection System

Teachers form the backbone of any educational system, hence selecting qualified candidates is very crucial. In Malaysia, the decision making in the selection process involves a few stages: Initial filtering through academic achievement, taking entry examination and going through an interview session. The last stage is the most challenging since it highly depends on human judgment. Therefore, this study sought to identify the selection criteria for teacher candidates that form the basis for an efficient multi-criteria teacher-candidate selection model for that last stage. The relevant criteria were determined from the literature and also based on expert input that is those who were involved in interviewing teacher candidates from a public university offering the formal training program. There are three main competency criteria that were identified which are content of knowledge, communication skills and personality. Further, each main criterion was divided into a few subcriteria. The Analytical Hierarchy Process (AHP) technique was employed to allocate weights for the criteria and later, integrated a Simple Weighted Average (SWA) scoring approach to develop the selection model. Subsequently, a web-based Decision Support System was developed to assist in the process of selecting the qualified teacher candidates. The Teacher-Candidate Selection (TeCaS) system is able to assist the panel of interviewers during the selection process which involves a large amount of complex qualitative judgments.

Teachers and Sports Coaches Supporting Young People-s Mental Health: Promotion, Prevention, and Early Intervention

Young people have a high prevalence of mental health problems, yet tend not to seek help. Trusted adults in young people-s lives, such as teachers and sports coaches, can make a major positive contribution to the mental health of young people. Teachers and sports coaches may be in a position to be effective in supporting young people-s mental health through promotion, prevention and early intervention. This study reports findings from interviews with 21 teachers and 13 sports coaches of young people aged 12 to 18 in Canberra, Australia, regarding their perceptions of the relevance and effectiveness of their role in supporting young people-s mental health. Both teachers and coaches perceived having influential but slightly different roles to play in supporting mental health. There may be potential to elevate the influence of teachers and coaches as sources of support for young people and their mental health care.

Social Commerce – E-Commerce in Social Media Context

This paper aims to address the new trend of social commerce as electronic commerce leverages Web 2.0 technologies and online social media. The infusions of new technologies on the World Wide Web connect users in their homes and workplaces, thus transforming social formations and business transactions. An in-depth study of the growth and success of a social commerce site, Facebook was conducted. The investigation is finalized with a triad relational model which reflects socioeconomic life in the Internet today. The following three concepts work jointly to form a global community that has already started to take the place of traditional commerce and socialization: Web 2.0 technology, E-commerce, and online social media. A discussion of the research findings indicates that social commerce networks are sustainable because of the various incentives given to users as they collaborate with others regardless of their identity and location. The focus of this article is to increase understanding on quickly developing Web 2.0 based social media and their subsequent effects on the emerging social commerce.

The Calculation of Electromagnetic Fields (EMF) in Substations of Shopping Centers

In nature, electromagnetic fields always appear like atmosphere static electric field, the earth's static magnetic field and the wide-rang frequency electromagnetic field caused by lightening. However, besides natural electromagnetic fields (EMF), today human beings are mostly exposed to artificial electromagnetic fields due to technology progress and outspread use of electrical devices. To evaluate nuisance of EMF, it is necessary to know field intensity for every frequency which appears and compare it with allowed values. Low frequency EMF-s around transmission and distribution lines are time-varying quasi-static electromagnetic fields which have conservative component of low frequency electrical field caused by charges and eddy component of low frequency magnetic field caused by currents. Displacement current or field delay are negligible, so energy flow in quasi-static EMF involves diffusion, analog like heat transfer. Electrical and magnetic field can be analyzed separately. This paper analysis the numerical calculations in ELF-400 software of EMF in distribution substation in shopping center. Analyzing the results it is possible to specify locations exposed to the fields and give useful suggestion to eliminate electromagnetic effect or reduce it on acceptable level within the non-ionizing radiation norms and norms of protection from EMF.

The Water Quantity and Quality for Conjunctive Use in Saline Soil Problem Area

The aim of research project is to evaluate quantity and quality for conjunctive use of groundwater and surface water in lower in the Lower Nam Kam area, Thailand, even though there have been hints of saline soil and water. The mathematical model named WUSMO and MIKE Basin were applied for the calculation of crop water utilization. Results of the study showed that, in irrigation command area, water consumption rely on various sources; rain water 21.56%, irrigation water 78.29%, groundwater and some small surface storage 0.15%. Meanwhile, for non-irrigation command area, water consumption depends on the Nam Kam and Nambang stream 42%, rain water 36.75% and groundwater and some small surface storage 19.18%. Samples of surface water and groundwater were collected for 2 seasons. The criterion was determined for the assessment of suitable water for irrigation. It was found that this area has very limited sources of suitable water for irrigation.

A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Cytotoxic Effects of Engineered Nanoparticles in Human Mesenchymal Stem Cells

Engineered nanoparticles’ usage rapidly increased in various applications in the last decade due to their unusual properties. However, there is an ever increasing concern to understand their toxicological effect in human health. Particularly, metal and metal oxide nanoparticles have been used in various sectors including biomedical, food and agriculture. But their impact on human health is yet to be fully understood. In this present investigation, we assessed the toxic effect of engineered nanoparticles (ENPs) including Ag, MgO and Co3O4 nanoparticles (NPs) on human mesenchymal stem cells (hMSC) adopting cell viability and cellular morphological changes as tools The results suggested that silver NPs are more toxic than MgO and Co3O4NPs. The ENPs induced cytotoxicity and nuclear morphological changes in hMSC depending on dose. The cell viability decreases with increase in concentration of ENPs. The cellular morphology studies revealed that ENPs damaged the cells. These preliminary findings have implications for the use of these nanoparticles in food industry with systematic regulations.

Gabriel-constrained Parametric Surface Triangulation

The Boundary Representation of a 3D manifold contains FACES (connected subsets of a parametric surface S : R2 -! R3). In many science and engineering applications it is cumbersome and algebraically difficult to deal with the polynomial set and constraints (LOOPs) representing the FACE. Because of this reason, a Piecewise Linear (PL) approximation of the FACE is needed, which is usually represented in terms of triangles (i.e. 2-simplices). Solving the problem of FACE triangulation requires producing quality triangles which are: (i) independent of the arguments of S, (ii) sensitive to the local curvatures, and (iii) compliant with the boundaries of the FACE and (iv) topologically compatible with the triangles of the neighboring FACEs. In the existing literature there are no guarantees for the point (iii). This article contributes to the topic of triangulations conforming to the boundaries of the FACE by applying the concept of parameterindependent Gabriel complex, which improves the correctness of the triangulation regarding aspects (iii) and (iv). In addition, the article applies the geometric concept of tangent ball to a surface at a point to address points (i) and (ii). Additional research is needed in algorithms that (i) take advantage of the concepts presented in the heuristic algorithm proposed and (ii) can be proved correct.

Application of Biometrics to Obtain High Entropy Cryptographic Keys

In this paper, a two factor scheme is proposed to generate cryptographic keys directly from biometric data, which unlike passwords, are strongly bound to the user. Hash value of the reference iris code is used as a cryptographic key and its length depends only on the hash function, being independent of any other parameter. The entropy of such keys is 94 bits, which is much higher than any other comparable system. The most important and distinct feature of this scheme is that it regenerates the reference iris code by providing a genuine iris sample and the correct user password. Since iris codes obtained from two images of the same eye are not exactly the same, error correcting codes (Hadamard code and Reed-Solomon code) are used to deal with the variability. The scheme proposed here can be used to provide keys for a cryptographic system and/or for user authentication. The performance of this system is evaluated on two publicly available databases for iris biometrics namely CBS and ICE databases. The operating point of the system (values of False Acceptance Rate (FAR) and False Rejection Rate (FRR)) can be set by properly selecting the error correction capacity (ts) of the Reed- Solomon codes, e.g., on the ICE database, at ts = 15, FAR is 0.096% and FRR is 0.76%.

Inter-frame Collusion Attack in SS-N Video Watermarking System

Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.

Study and Design of Patient Flow at the Medicine Department of a University Hospital

Most, if not all, public hospitals in Thailand have encountered a common problem regarding the increasing demand for medical services. The increasing number of patients causes so much strain on the hospital-s services, over-crowded, overloaded working hours, staff fatigue, medical error and long waiting time. This research studied the characteristics of operational processes of the medical care services at the medicine department in a large public university hospital. The research focuses on details regarding methods, procedures, processes, resources, and time management in overall processes. The simulation model is used as a tool to analyze the impact of various improvement strategies.

Numerical Modeling of Gas Turbine Engines

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasi-stationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Strategies and Compromises: Towards an Integrated Energy and Climate Policy for Egypt

Until recently, energy security and climate change were considered separate issues to be dealt with by policymakers. The two issues are now converging, challenging the security and climate communities to develop a better understanding of how to deal with both issues simultaneously. Although Egypt is not a major contributor to the world's total GHG emissions, it is particularly vulnerable to the potential effects of global climate change such as rising sea levels and changed patterns of rainfall in the Nile Basin. Climate change is a major threat to sustainable growth and development in Egypt, and the achievement of the Millennium Development Goals. Egypt-s capacity to respond to the challenges of climate instability will be expanded by improving overall resilience, integrating climate change goals into sustainable development strategies, increasing the use of modern energy systems with reduced carbon intensity, and strengthening international initiatives. This study seeks to establish a framework for considering the complex and evolving links between energy security and climate change, applicable to Egypt.

Minimizing Examinee Collusion with a Latin- Square Treatment Structure

Cheating on standardized tests has been a major concern as it potentially minimizes measurement precision. One major way to reduce cheating by collusion is to administer multiple forms of a test. Even with this approach, potential collusion is still quite large. A Latin-square treatment structure for distributing multiple forms is proposed to further reduce the colluding potential. An index to measure the extent of colluding potential is also proposed. Finally, with a simple algorithm, the various Latin-squares were explored to find the best structure to keep the colluding potential to a minimum.

Design of PID Controller for Higher Order Continuous Systems using MPSO based Model Formulation Technique

This paper proposes a new algebraic scheme to design a PID controller for higher order linear time invariant continuous systems. Modified PSO (MPSO) based model order formulation techniques have applied to obtain the effective formulated second order system. A controller is tuned to meet the desired performance specification by using pole-zero cancellation method. Proposed PID controller is attached with both higher order system and formulated second order system. The closed loop response is observed for stabilization process and compared with general PSO based formulated second order system. The proposed method is illustrated through numerical example from literature.

Influence of IMV on Space Station

To study the impact of the inter-module ventilation (IMV) on the space station, the Computational Fluid Dynamic (CFD) model under the influence of IMV, the mathematical model, boundary conditions and calculation method are established and determined to analyze the influence of IMV on cabin air flow characteristics and velocity distribution firstly; and then an integrated overall thermal mathematical model of the space station is used to consider the impact of IMV on thermal management. The results show that: the IMV has a significant influence on the cabin air flow, the flowrate of IMV within a certain range can effectively improve the air velocity distribution in cabin, if too much may lead to its deterioration; IMV can affect the heat deployment of the different modules in space station, thus affecting its thermal management, the use of IMV can effectively maintain the temperature levels of the different modules and help the space station to dissipate the waste heat.

Sequence Relationships Similarity of Swine Influenza a (H1N1) Virus

In April 2009, a new variant of Influenza A virus subtype H1N1 emerged in Mexico and spread all over the world. The influenza has three subtypes in human (H1N1, H1N2 and H3N2) Types B and C influenza tend to be associated with local or regional epidemics. Preliminary genetic characterization of the influenza viruses has identified them as swine influenza A (H1N1) viruses. Nucleotide sequence analysis of the Haemagglutinin (HA) and Neuraminidase (NA) are similar to each other and the majority of their genes of swine influenza viruses, two genes coding for the neuraminidase (NA) and matrix (M) proteins are similar to corresponding genes of swine influenza. Sequence similarity between the 2009 A (H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period. Nucleic acid sequence Maximum Likelihood (MCL) and DNA Empirical base frequencies, Phylogenetic relationship amongst the HA genes of H1N1 virus isolated in Genbank having high nucleotide sequence homology. In this paper we used 16 HA nucleotide sequences from NCBI for computing sequence relationships similarity of swine influenza A virus using the following method MCL the result is 28%, 36.64% for Optimal tree with the sum of branch length, 35.62% for Interior branch phylogeny Neighber – Join Tree, 1.85% for the overall transition/transversion, and 8.28% for Overall mean distance.

Application of Hermite-Rodriguez Functions to Pulse Shaping Analog Filter Design

In this paper, we consider the design of pulse shaping filter using orthogonal Hermite-Rodriguez basis functions. The pulse shaping filter design problem has been formulated and solved as a quadratic programming problem with linear inequality constraints. Compared with the existing approaches reported in the literature, the use of Hermite-Rodriguez functions offers an effective alternative to solve the constrained filter synthesis problem. This is demonstrated through a numerical example which is concerned with the design of an equalization filter for a digital transmission channel.