Array Signal Processing: DOA Estimation for Missing Sensors

Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.

Deep iCrawl: An Intelligent Vision-Based Deep Web Crawler

The explosive growth of World Wide Web has posed a challenging problem in extracting relevant data. Traditional web crawlers focus only on the surface web while the deep web keeps expanding behind the scene. Deep web pages are created dynamically as a result of queries posed to specific web databases. The structure of the deep web pages makes it impossible for traditional web crawlers to access deep web contents. This paper, Deep iCrawl, gives a novel and vision-based approach for extracting data from the deep web. Deep iCrawl splits the process into two phases. The first phase includes Query analysis and Query translation and the second covers vision-based extraction of data from the dynamically created deep web pages. There are several established approaches for the extraction of deep web pages but the proposed method aims at overcoming the inherent limitations of the former. This paper also aims at comparing the data items and presenting them in the required order.

Automatic Visualization Pipeline Formation for Medical Datasets on Grid Computing Environment

Distance visualization of large datasets often takes the direction of remote viewing and zooming techniques of stored static images. However, the continuous increase in the size of datasets and visualization operation causes insufficient performance with traditional desktop computers. Additionally, the visualization techniques such as Isosurface depend on the available resources of the running machine and the size of datasets. Moreover, the continuous demand for powerful computing powers and continuous increase in the size of datasets results an urgent need for a grid computing infrastructure. However, some issues arise in current grid such as resources availability at the client machines which are not sufficient enough to process large datasets. On top of that, different output devices and different network bandwidth between the visualization pipeline components often result output suitable for one machine and not suitable for another. In this paper we investigate how the grid services could be used to support remote visualization of large datasets and to break the constraint of physical co-location of the resources by applying the grid computing technologies. We show our grid enabled architecture to visualize large medical datasets (circa 5 million polygons) for remote interactive visualization on modest resources clients.

Distortion Estimation in Digital Image Watermarking using Genetic Programming

This paper introduces a technique of distortion estimation in image watermarking using Genetic Programming (GP). The distortion is estimated by considering the problem of obtaining a distorted watermarked signal from the original watermarked signal as a function regression problem. This function regression problem is solved using GP, where the original watermarked signal is considered as an independent variable. GP-based distortion estimation scheme is checked for Gaussian attack and Jpeg compression attack. We have used Gaussian attacks of different strengths by changing the standard deviation. JPEG compression attack is also varied by adding various distortions. Experimental results demonstrate that the proposed technique is able to detect the watermark even in the case of strong distortions and is more robust against attacks.

Fatigue Failure of Structural Steel – Analysis Using Fracture Mechanics

Fatigue is the major threat in service of steel structure subjected to fluctuating loads. With the additional effect of corrosion and presence of weld joints the fatigue failure may become more critical in structural steel. One of the apt examples of such structural is the sailing ship. This is experiencing a constant stress due to floating and a pulsating bending load due to the waves. This paper describes an attempt to verify theory of fatigue in fracture mechanics approach with experimentation to determine the constants of crack growth curve. For this, specimen is prepared from the ship building steel and it is subjected to a pulsating bending load with a known defect. Fatigue crack and its nature is observed in this experiment. Application of fracture mechanics approach in fatigue with a simple practical experiment is conducted and constants of crack growth equation are investigated.

Real-time Performance Study of EPA Periodic Data Transmission

EPA (Ethernet for Plant Automation) resolves the nondeterministic problem of standard Ethernet and accomplishes real-time communication by means of micro-segment topology and deterministic scheduling mechanism. This paper studies the real-time performance of EPA periodic data transmission from theoretical and experimental perspective. By analyzing information transmission characteristics and EPA deterministic scheduling mechanism, 5 indicators including delivery time, time synchronization accuracy, data-sending time offset accuracy, utilization percentage of configured timeslice and non-RTE bandwidth that can be used to specify the real-time performance of EPA periodic data transmission are presented and investigated. On this basis, the test principles and test methods of the indicators are respectively studied and some formulas for real-time performance of EPA system are derived. Furthermore, an experiment platform is developed to test the indicators of EPA periodic data transmission in a micro-segment. According to the analysis and the experiment, the methods to improve the real-time performance of EPA periodic data transmission including optimizing network structure, studying self-adaptive adjustment method of timeslice and providing data-sending time offset accuracy for configuration are proposed.

Backstepping Sliding Mode Controller Coupled to Adaptive Sliding Mode Observer for Interconnected Fractional Nonlinear System

Performance control law is studied for an interconnected fractional nonlinear system. Applying a backstepping algorithm, a backstepping sliding mode controller (BSMC) is developed for fractional nonlinear system. To improve control law performance, BSMC is coupled to an adaptive sliding mode observer have a filtered error as a sliding surface. The both architecture performance is studied throughout the inverted pendulum mounted on a cart. Simulation result show that the BSMC coupled to an adaptive sliding mode observer have stable control law and eligible control amplitude than the BSMC.

Flood Hazard Mapping in Dikrong Basin of Arunachal Pradesh (India)

Flood zoning studies have become more efficient in recent years because of the availability of advanced computational facilities and use of Geographic Information Systems (GIS). In the present study, flood inundated areas were mapped using GIS for the Dikrong river basin of Arunachal Pradesh, India, corresponding to different return periods (2, 5, 25, 50, and 100 years). Further, the developed inundation maps corresponding to 25, 50, and 100 year return period floods were compared to corresponding maps developed by conventional methods as reported in the Brahmaputra Board Master Plan for Dikrong basin. It was found that, the average deviation of modelled flood inundation areas from reported map inundation areas is below 5% (4.52%). Therefore, it can be said that the modelled flood inundation areas matched satisfactorily with reported map inundation areas. Hence, GIS techniques were proved to be successful in extracting the flood inundation extent in a time and cost effective manner for the remotely located hilly basin of Dikrong, where conducting conventional surveys is very difficult.

A New Method for Detection of Artificial Objects and Materials from Long Distance Environmental Images

The article presents a new method for detection of artificial objects and materials from images of the environmental (non-urban) terrain. Our approach uses the hue and saturation (or Cb and Cr) components of the image as the input to the segmentation module that uses the mean shift method. The clusters obtained as the output of this stage have been processed by the decision-making module in order to find the regions of the image with the significant possibility of representing human. Although this method will detect various non-natural objects, it is primarily intended and optimized for detection of humans; i.e. for search and rescue purposes in non-urban terrain where, in normal circumstances, non-natural objects shouldn-t be present. Real world images are used for the evaluation of the method.

Autistic Children and Different Tense Forms

Autism spectrum disorder is characterized by abnormalities in social communication, language abilities and repetitive behaviors. The present study focused on some grammatical deficits in autistic children. We evaluated the impairment of correct use of different Persian verb tenses in autistic children-s speech. Two standardized Language Test were administered then gathered data were analyzed. The main result of this study was significant difference between the mean scores of correct responses to present tense in comparison with past tense in Persian language. This study demonstrated that tense is severely impaired in autistic children-s speech. Our findings indicated those autistic children-s production of simple present/ past tense opposition to be better than production of future and past periphrastic forms (past perfect, present perfect, past progressive).

Application and Limitation of Parallel Modelingin Multidimensional Sequential Pattern

The goal of data mining algorithms is to discover useful information embedded in large databases. One of the most important data mining problems is discovery of frequently occurring patterns in sequential data. In a multidimensional sequence each event depends on more than one dimension. The search space is quite large and the serial algorithms are not scalable for very large datasets. To address this, it is necessary to study scalable parallel implementations of sequence mining algorithms. In this paper, we present a model for multidimensional sequence and describe a parallel algorithm based on data parallelism. Simulation experiments show good load balancing and scalable and acceptable speedup over different processors and problem sizes and demonstrate that our approach can works efficiently in a real parallel computing environment.

Biological Effects of a Carbohydrate-Binding Protein from an Annelid, Perinereis nuntia Against Human and Phytopathogenic Microorganisms

Lectins have a good scope in current clinical microbiology research. In the present study evaluated the antimicrobial activities of a D-galactose binding lectin (PnL) was purified from the annelid, Perinereis nuntia (polychaeta) by affinity chromatography. The molecular mass of the lectin was determined to be 32 kDa as a single polypeptide by SDS-PAGE under both reducing and non-reducing conditions. The hemagglutinating activity of the PnL showed against trypsinized and glutaraldehyde-fixed human erythrocytes was specifically inhibited by D-Gal, GalNAc, Galβ1-4Glc and Galα1-6Glc. PnL was evaluated for in vitro antibacterial screening studies against 11 gram-positive and gram-negative microorganisms. From the screening results, it was revealed that PnL exhibited significant antibacterial activity against gram-positive bacteria. Bacillus megaterium showed the highest growth inhibition by the lectin (250 μg/disc). However, PnL did not inhibit the growth of gram-negative bacteria such as Vibrio cholerae and Pseudomonas sp. PnL was also examined for in vitro antifungal activity against six fungal phytopathogens. PnL (100 μg/mL) inhibited the mycelial growth of Alternaria alternata (24.4%). These results indicate that future findings of lectin applications obtained from annelids may be of importance to life sciences.

Fungal Leaching of Hazardous Heavy Metals from a Spent Hydrotreating Catalyst

In this study, the ability of Aspergillus niger and Penicillium simplicissimum to extract heavy metals from a spent refinery catalyst was investigated. For the first step, a spent processing catalyst from one of the oil refineries in Iran was physically and chemically characterized. Aspergillus niger and Penicillium simplicissimum were used to mobilize Al/Co/Mo/Ni from hazardous spent catalysts. The fungi were adapted to the mixture of metals at 100-800 mg L-1 with increments in concentration of 100 mg L-1. Bioleaching experiments were carried out in batch cultures. To investigate the production of organic acids in sucrose medium, analyses of the culture medium by HPLC were performed at specific time intervals after inoculation. The results obtained from Inductive coupled plasma-optical emission spectrometry (ICP-OES) showed that after the one-step bioleaching process using Aspergillus niger, maximum removal efficiencies of 27%, 66%, 62% and 38% were achieved for Al, Co, Mo and Ni, respectively. However, the highest removal efficiencies using Penicillium simplicissimum were of 32%, 67%, 65% and 38% for Al, Co, Mo and Ni, respectively

Machine Morphisms and Simulation

This paper examines the concept of simulation from a modelling viewpoint. How can one Mealy machine simulate the other one? We create formalism for simulation of Mealy machines. The injective s–morphism of the machine semigroups induces the simulation of machines [1]. We present the example of s–morphism such that it is not a homomorphism of semigroups. The story for the surjective s–morphisms is quite different. These are homomorphisms of semigroups but there exists the surjective s–morphism such that it does not induce the simulation.

Behaviour of Masonry Wall Constructed using Interlocking Soil Cement Bricks

According to the masonry standard the compressive strength is basically dependent on factors such as the mortar strength and the relative values of unit and mortar strength. However interlocking brick has none or less use of mortar. Therefore there is a need to investigate the behavior of masonry walls using interlocking bricks. In this study a series of tests have been conducted; physical properties and compressive strength of brick units and masonry walls were constructed from interlocking bricks and tested under constant vertical load at different eccentricities. The purpose of the experimental investigations is to obtain the force displacement curves, analyze the behavior of masonry walls. The results showed that the brick is categorized as common brick (BS 3921:1985) and severe weathering grade (ASTM C62). The maximum compressive stress of interlocking brick wall is 3.6 N/mm2 and fulfilled the requirement of standard for residential building.

Cloud Computing Databases: Latest Trends and Architectural Concepts

The Economic factors are leading to the rise of infrastructures provides software and computing facilities as a service, known as cloud services or cloud computing. Cloud services can provide efficiencies for application providers, both by limiting up-front capital expenses, and by reducing the cost of ownership over time. Such services are made available in a data center, using shared commodity hardware for computation and storage. There is a varied set of cloud services available today, including application services (salesforce.com), storage services (Amazon S3), compute services (Google App Engine, Amazon EC2) and data services (Amazon SimpleDB, Microsoft SQL Server Data Services, Google-s Data store). These services represent a variety of reformations of data management architectures, and more are on the horizon.

Detection of Diabetic Symptoms in Retina Images Using Analog Algorithms

In this paper a class of analog algorithms based on the concept of Cellular Neural Network (CNN) is applied in some processing operations of some important medical images, namely retina images, for detecting various symptoms connected with diabetic retinopathy. Some specific processing tasks like morphological operations, linear filtering and thresholding are proposed, the corresponding template values are given and simulations on real retina images are provided.

Parametric Optimization of Hospital Design

Present paper presents a parametric performancebased design model for optimizing hospital design. The design model operates with geometric input parameters defining the functional requirements of the hospital and input parameters in terms of performance objectives defining the design requirements and preferences of the hospital with respect to performances. The design model takes point of departure in the hospital functionalities as a set of defined parameters and rules describing the design requirements and preferences.

Applications of Artificial Neural Network to Building Statistical Models for Qualifying and Indexing Radiation Treatment Plans

The main goal in this paper is to quantify the quality of different techniques for radiation treatment plans, a back-propagation artificial neural network (ANN) combined with biomedicine theory was used to model thirteen dosimetric parameters and to calculate two dosimetric indices. The correlations between dosimetric indices and quality of life were extracted as the features and used in the ANN model to make decisions in the clinic. The simulation results show that a trained multilayer back-propagation neural network model can help a doctor accept or reject a plan efficiently. In addition, the models are flexible and whenever a new treatment technique enters the market, the feature variables simply need to be imported and the model re-trained for it to be ready for use.

Finite Element Analysis of Sheet Metal Airbending Using Hyperform LS-DYNA

Air bending is one of the important metal forming processes, because of its simplicity and large field application. Accuracy of analytical and empirical models reported for the analysis of bending processes is governed by simplifying assumption and do not consider the effect of dynamic parameters. Number of researches is reported on the finite element analysis (FEA) of V-bending, Ubending, and air V-bending processes. FEA of bending is found to be very sensitive to many physical and numerical parameters. FE models must be computationally efficient for practical use. Reported work shows the 3D FEA of air bending process using Hyperform LSDYNA and its comparison with, published 3D FEA results of air bending in Ansys LS-DYNA and experimental results. Observing the planer symmetry and based on the assumption of plane strain condition, air bending problem was modeled in 2D with symmetric boundary condition in width. Stress-strain results of 2D FEA were compared with 3D FEA results and experiments. Simplification of air bending problem from 3D to 2D resulted into tremendous reduction in the solution time with only marginal effect on stressstrain results. FE model simplification by studying the problem symmetry is more efficient and practical approach for solution of more complex large dimensions slow forming processes.