Analysis of Lightweight Register Hardware Threat

In this paper, we present a design methodology of lightweight register transfer level (RTL) hardware threat implemented based on a MAX II FPGA platform. The dynamic power consumed by the toggling of the various bit of registers as well as the dynamic power consumed per unit of logic circuits were analyzed. The hardware threat was designed taking advantage of the differences in dynamic power consumed per unit of logic circuits to hide the transfer information. The experiment result shows that the register hardware threat was successfully implemented by using different dynamic power consumed per unit of logic circuits to hide the key information of DES encryption module. It needs more than 100000 sample curves to reduce the background noise by comparing the sample space when it completely meets the time alignment requirement. In additional, an external trigger signal is playing a very important role to detect the hardware threat in this experiment.

Characterization of Cement Mortar Based on Fine Quartz

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Reverse Engineering of Agricultural Machinery: A Key to Food Sufficiency in Nigeria

Agriculture employs about three-quarter of Nigeria's workforce and yet food sufficiency is a challenge in the country. This is largely due to poor and outdated pre-harvest and post-harvest farming practices. The land fallow system is still been practised as fertiliser production in the country is grossly inadequate and expensive. The few available post-harvest processing facilities are faced with ageing and are inefficient. Also, use of modern processing equipment is limited by farmers' lack of fund, adequate capacity to operate and maintain modern farming equipment. This paper, therefore, examines key barriers to agricultural products processing equipment in the country. These barriers include over-dependence on foreign technologies and expertise; poor and inadequate manufacturing infrastructure; and lack of political will by political leaders; lack of funds; and lack of adequate technical skills. This paper, however, sees the increase in the domestic manufacturing of pre-harvest and post-harvest machinery and equipment through reverse engineering approach as a key to food production sufficiency in Nigeria.

Adhesion Performance According to Lateral Reinforcement Method of Textile

Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected.

Investigation on the Physical Conditions of Façade Systems of Campus Buildings by Infrared Thermography Tests

Campus buildings are educational facilities where various amount of energy consumption for lighting, heating, cooling and ventilation occurs. Some of the new universities in Turkey, where this investigation takes place, still continue their educational activities in existing buildings primarily designed for different architectural programs and converted to campus buildings via changes of function, space organizations and structural interventions but most of the time without consideration of appropriate micro climatic conditions. Reducing energy consumption in these structures not only contributes to the national economy but also mitigates the negative effects on environment. Furthermore, optimum thermal comfort conditions should be provided during the refurbishment of existing campus structures and their building envelope. Considering this issue, the first step is to investigate the climatic performance of building elements regarding refurbishment process. In the context of the study Kocaeli University, Faculty of Design and Architecture building constructed in 1980s in Anıtpark campus located in the central part of Kocaeli, Turkey was investigated. Climatic factors influencing thermal conditions; the deteriorations on building envelope; temperature distribution; heat losses from façade elements observed by thermography were presented in order to improve strategies for retrofit process for the building envelope. Within the scope of the survey, refurbishment strategies towards providing optimum climatic comfort conditions, increasing energy efficiency of building envelope were proposed.

Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections

To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints.

An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Composite Distributed Generation and Transmission Expansion Planning Considering Security

During the recent past, due to the increase of electrical energy demand and governmental resources constraints in creating additional capacity in the generation, transmission, and distribution, privatization, and restructuring in electrical industry have been considered. So, in most of the countries, different parts of electrical industry like generation, transmission, and distribution have been separated in order to create competition. Considering these changes, environmental issues, energy growth, investment of private equity in energy generation units and difficulties of transmission lines expansion, distributed generation (DG) units have been used in power systems. Moreover, reduction in the need for transmission and distribution, the increase of reliability, improvement of power quality, and reduction of power loss have caused DG to be placed in power systems. On the other hand, considering low liquidity need, private investors tend to spend their money for DGs. In this project, the main goal is to offer an algorithm for planning and placing DGs in order to reduce the need for transmission and distribution network.

Promoting Non-Formal Learning Mobility in the Field of Youth

The purpose of this study is to develop a framework for the assessment of research and development projects. The assessment map is developed in this study based on the strategy map of the balanced scorecard approach. The assessment map is applied in a project that aims to reduce the inequality and risk of exclusion of young people from disadvantaged social groups. The assessment map denotes that not only funding but also necessary skills and qualifications should be carefully assessed in the implementation of the project plans so as to achieve the objectives of projects and the desired impact. The results of this study are useful for those who want to develop the implementation of the Erasmus+ Programme and the project teams of research and development projects.

A Development of a Simulation Tool for Production Planning with Capacity-Booking at Specialty Store Retailer of Private Label Apparel Firms

In this paper, we suggest a simulation tool to make a decision of monthly production planning for maximizing a profit of Specialty store retailer of Private label Apparel (SPA) firms. Most of SPA firms are fabless and make outsourcing deals for productions with factories of their subcontractors. Every month, SPA firms make a booking for production lines and manpower in the factories. The booking is conducted a few months in advance based on a demand prediction and a monthly production planning at that time. However, the demand prediction is updated month by month, and the monthly production planning would change to meet the latest demand prediction. Then, SPA firms have to change the capacities initially booked within a certain range to suit to the monthly production planning. The booking system is called “capacity-booking”. These days, though it is an issue for SPA firms to make precise monthly production planning, many firms are still conducting the production planning by empirical rules. In addition, it is also a challenge for SPA firms to match their products and factories with considering their demand predictabilities and regulation abilities. In this paper, we suggest a model for considering these two issues. An objective is to maximize a total profit of certain periods, which is sales minus costs of production, inventory, and capacity-booking penalty. To make a better monthly production planning at SPA firms, these points should be considered: demand predictabilities by random trends, previous and next month’s production planning of the target month, and regulation abilities of the capacity-booking. To decide matching products and factories for outsourcing, it is important to consider seasonality, volume, and predictability of each product, production possibility, size, and regulation ability of each factory. SPA firms have to consider these constructions and decide orders with several factories per one product. We modeled these issues as a linear programming. To validate the model, an example of several computational experiments with a SPA firm is presented. We suppose four typical product groups: basic, seasonal (Spring / Summer), seasonal (Fall / Winter), and spot product. As a result of the experiments, a monthly production planning was provided. In the planning, demand predictabilities from random trend are reduced by producing products which are different product types. Moreover, priorities to produce are given to high-margin products. In conclusion, we developed a simulation tool to make a decision of monthly production planning which is useful when the production planning is set every month. We considered the features of capacity-booking, and matching of products and factories which have different features and conditions.

Effect of Low Plastic Clay Quantity on Behavioral Characteristics of Loose Sand

After the Nigatta earthquake in Japan, in 1960, the liquefaction and its related hazards, moved to the thick of matter. Most of the research have been carried out on clean sands and silty sands so far, in order to study the effect of fine particles, confinement pressures, density and so on. However, because of this delusion that adhesiveness of clay prevents the liquefaction in sand, studies on clayey sands have not been taken seriously. However, several liquefactions happened in clayey sands in recent years, and lead to the necessity of more studies in this field. The studies which were carried out so far focused on high plastic clays. In this paper, the effect of low plasticity clays on the behavioral characteristics of sands is discussed. Thus, some triaxial tests were carried out on clean sands and clayey sands with different percentages of added clay. Specimens were compacted in various densities to study the effect of quantity of clay on various densities, too. Based on the findings, the amount of clay affects the behavior of sand greatly and leads to substantial changes in peak bearing capacity and steady state values.

Development of Industry Sector Specific Factory Standards

Due to shortening product and technology lifecycles, many companies use standardization approaches in product development and factory planning to reduce costs and time to market. Unlike large companies, where modular systems are already widely used, small and medium-sized companies often show a much lower degree of standardization due to lower scale effects and missing capacities for the development of these standards. To overcome these challenges, the development of industry sector specific standards in cooperations or by third parties is an interesting approach. This paper analyzes which branches that are mainly dominated by small or medium-sized companies might be especially interesting for the development of factory standards using the example of the German industry. For this, a key performance indicator based approach was developed that will be presented in detail with its specific results for the German industry structure.

Heat Transfer and Entropy Generation in a Partial Porous Channel Using LTNE and Exothermicity/Endothermicity Features

This work aims to provide a comprehensive study on the heat transfer and entropy generation rates of a horizontal channel partially filled with a porous medium which experiences internal heat generation or consumption due to exothermic or endothermic chemical reaction. The focus has been given to the local thermal non-equilibrium (LTNE) model. The LTNE approach helps us to deliver more accurate data regarding temperature distribution within the system and accordingly to provide more accurate Nusselt number and entropy generation rates. Darcy-Brinkman model is used for the momentum equations, and constant heat flux is assumed for boundary conditions for both upper and lower surfaces. Analytical solutions have been provided for both velocity and temperature fields. By incorporating the investigated velocity and temperature formulas into the provided fundamental equations for the entropy generation, both local and total entropy generation rates are plotted for a number of cases. Bifurcation phenomena regarding temperature distribution and interface heat flux ratio are observed. It has been found that the exothermicity or endothermicity characteristic of the channel does have a considerable impact on the temperature fields and entropy generation rates.

Low-Cost Space-Based Geoengineering: An Assessment Based on Self-Replicating Manufacturing of in-Situ Resources on the Moon

Geoengineering approaches to climate change mitigation are unpopular and regarded with suspicion. Of these, space-based approaches are regarded as unworkable and enormously costly. Here, a space-based approach is presented that is modest in cost, fully controllable and reversible, and acts as a natural spur to the development of solar power satellites over the longer term as a clean source of energy. The low-cost approach exploits self-replication technology which it is proposed may be enabled by 3D printing technology. Self-replication of 3D printing platforms will enable mass production of simple spacecraft units. Key elements being developed are 3D-printable electric motors and 3D-printable vacuum tube-based electronics. The power of such technologies will open up enormous possibilities at low cost including space-based geoengineering.

Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture

Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.

The Impact of Corporate Governance Regulation in the Nigerian Banking Sector

Recent global corporate failures have called for increase in the need to regulate corporate governance across the world. In Nigeria, the impact of corporate governance regulation in the banking sector has reached epidemic levels contributing to the country’s economic depression. This study critically evaluates Nigeria’s corporate governance regime and explores how weak regulation has impacted on the banking sector. By adopting a socio legal methodology, the study analyses both theoretical and empirical works from a socio-scientific point of view to examine the role of Nigeria’s legal, cultural and social arrangements in corporate governance regulation. The study reveals that Nigeria’s institutional arrangement has contributed to its weak system of corporate governance regulation with adverse effects on the banking sector. The research mainly impacts on current global corporate governance literature in sub-Saharan Africa by contributing to knowledge of the peculiarities of corporate governance regulation in different institutional jurisdictions. The particular focus on emerging economies such as Nigeria expands on the need for countries to develop a bespoke system of corporate governance regulation that takes into consideration the peculiarities of individual countries devoid of external influence.

Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems

This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.

Potential Climate Change Impacts on the Hydrological System of the Harvey River Catchment

Climate change is likely to impact the Australian continent by changing the trends of rainfall, increasing temperature, and affecting the accessibility of water quantity and quality. This study investigates the possible impacts of future climate change on the hydrological system of the Harvey River catchment in Western Australia by using the conceptual modelling approach (HBV mode). Daily observations of rainfall and temperature and the long-term monthly mean potential evapotranspiration, from six weather stations, were available for the period (1961-2015). The observed streamflow data at Clifton Park gauging station for 33 years (1983-2015) in line with the observed climate variables were used to run, calibrate and validate the HBV-model prior to the simulation process. The calibrated model was then forced with the downscaled future climate signals from a multi-model ensemble of fifteen GCMs of the CMIP3 model under three emission scenarios (A2, A1B and B1) to simulate the future runoff at the catchment outlet. Two periods were selected to represent the future climate conditions including the mid (2046-2065) and late (2080-2099) of the 21st century. A control run, with the reference climate period (1981-2000), was used to represent the current climate status. The modelling outcomes show an evident reduction in the mean annual streamflow during the mid of this century particularly for the A1B scenario relative to the control run. Toward the end of the century, all scenarios show a relatively high reduction trends in the mean annual streamflow, especially the A1B scenario, compared to the control run. The decline in the mean annual streamflow ranged between 4-15% during the mid of the current century and 9-42% by the end of the century.

Vibrational Behavior of Cylindrical Shells in Axial Magnetic Field

The investigation of the vibrational character of magnetic cylindrical shells placed in an axial magnetic field has important practical applications. In this work, we study the vibrational behaviour of such a cylindrical shell by making use of the so-called exact space treatment, which does not assume any hypothesis. We discuss the effects of several practically important boundary conditions on the vibrations of the described setup. We find that, for some cases of boundary conditions, e.g. clamped, simply supported or peripherally earthed, as well as for some values of the wave numbers, the vibrational frequencies of the shell are approximately zero. The theoretical and numerical exploration of this fact confirms that the vibrations are absent or attenuate very rapidly. For all the considered cases, the imaginary part of the frequencies is negative, which implies stability for the vibrational process.

Corporate Governance and Corporate Social Responsibility: Research on the Interconnection of Both Concepts and Its Impact on Non-Profit Organizations

The aim of non-profit organizations (NPO) is to provide services and goods for its clientele, with profit being a minor objective. By having this definition as the basic purpose of doing business, it is obvious that the goal of an organisation is to serve several bottom lines and not only the financial one. This approach is underpinned by the non-distribution constraint which means that NPO are allowed to make profits to a certain extent, but not to distribute them. The advantage is that there are no single shareholders who might have an interest in the prosperity of the organisation: there is no pie to divide. The gained profits remain within the organisation and will be reinvested in purposeful projects. Good governance is mandatory to support the aim of NPOs. Looking for a measure of good governance the principals of corporate governance (CG) will come in mind. The purpose of CG is direction and control, and in the field of NPO, CG is enlarged to consider the relationship to all important stakeholders who have an impact on the organisation. The recognition of more relevant parties than the shareholder is the link to corporate social responsibility (CSR). It supports a broader view of the bottom line: It is no longer enough to know how profits are used but rather how they are made. Besides, CSR addresses the responsibility of organisations for their impact on society. When transferring the concept of CSR to the non-profit area it will become obvious that CSR with its distinctive features will match the aims of NPOs. As a consequence, NPOs who apply CG apply also CSR to a certain extent. The research is designed as a comprehensive theoretical and empirical analysis. First, the investigation focuses on the theoretical basis of both concepts. Second, the similarities and differences are outlined and as a result the interconnection of both concepts will show up. The contribution of this research is manifold: The interconnection of both concepts when applied to NPOs has not got any attention in science yet. CSR and governance as integrated concept provides a lot of advantages for NPOs compared to for-profit organisations which are in a steady justification to show the impact they might have on the society. NPOs, however, integrate economic and social aspects as starting point. For NPOs CG is not a mere concept of compliance but rather an enhanced concept integrating a lot of aspects of CSR. There is no “either-nor” between the concepts for NPOs.