Integration of Seismic and Seismological Data Interpretation for Subsurface Structure Identification

The structural interpretation of a part of eastern Potwar (Missa Keswal) has been carried out with available seismological, seismic and well data. Seismological data contains both the source parameters and fault plane solution (FPS) parameters and seismic data contains ten seismic lines that were re-interpreted by using well data. Structural interpretation depicts two broad types of fault sets namely, thrust and back thrust faults. These faults together give rise to pop up structures in the study area and also responsible for many structural traps and seismicity. Seismic interpretation includes time and depth contour maps of Chorgali Formation while seismological interpretation includes focal mechanism solution (FMS), depth, frequency, magnitude bar graphs and renewal of Seismotectonic map. The Focal Mechanism Solutions (FMS) that surrounds the study area are correlated with the different geological and structural maps of the area for the determination of the nature of subsurface faults. Results of structural interpretation from both seismic and seismological data show good correlation. It is hoped that the present work will help in better understanding of the variations in the subsurface structure and can be a useful tool for earthquake prediction, planning of oil field and reservoir monitoring.

The First Integral Approach in Stability Problem of Large Scale Nonlinear Dynamical Systems

In analyzing large scale nonlinear dynamical systems, it is often desirable to treat the overall system as a collection of interconnected subsystems. Solutions properties of the large scale system are then deduced from the solution properties of the individual subsystems and the nature of the interconnections. In this paper a new approach is proposed for the stability analysis of large scale systems, which is based upon the concept of vector Lyapunov functions and the decomposition methods. The present results make use of graph theoretic decomposition techniques in which the overall system is partitioned into a hierarchy of strongly connected components. We show then, that under very reasonable assumptions, the overall system is stable once the strongly connected subsystems are stables. Finally an example is given to illustrate the constructive methodology proposed.

Considerations of Public Key Infrastructure (PKI), Functioning as a Chain of Trust in Electronic Payments Systems

The growth of open networks created the interest to commercialise it. The establishment of an electronic business mechanism must be accompanied by a digital – electronic payment system to transfer the value of transactions. Financial organizations are requested to offer a secure e-payment synthesis with equivalent level of security served in conventional paper-based payment transactions. PKI, which is functioning as a chain of trust in security architecture, can enable security services of cryptography to epayments, in order to take advantage of the wider base either of customer or of trading partners and the reduction of cost transaction achieved by the use of Internet channels. The paper addresses the possibilities and the implementation suggestions of PKI in relevance to electronic payments by suggesting a framework that should be followed.

Implementing Adaptive Steganography by Exploring the Ycbcr Color Model Characteristics

Stegnography is a new way of secret communication the most widely used mechanism on account of its simplicity is the use of the least significant bit. We have used the least significant bit (2 LSB and 4 LSB) substitution method. Depending upon the characteristics of the individual portions of cover image we decide whether to use 2 LSB or 4 LSB thus it is an adaptive stegnography technique. We used one of the three channels to behave as indicator to indicate the presence of hidden data in other two channels. The module showed impressive results in terms of capacity to hide the data. In proposed method, instead of using RGB color space directly, YCbCr color space is used to make use of human visual system characteristic.

Use Cuticular Hydrocarbons as Chemotaxonomic of The Pamphagidae Pamphagus elephas (Insecta, Orthoptera) of Algeria

The cuticular hydrocarbons of Pamphagus elephas (Orthoptera: Pamphagidae) has been analysed by gas chromatography and by combined gas chromatograph-mass spectrometry. The following hydrocarbon classes have been identified in insect cuticular hydrocarbons are: n-alkanes and methylalkanes comprising Monomethyl-, dimethyl-and trimethylalkanes. Sexual dimorphism is observed in long chain alkanes (C24-C36) present on male and female. The cuticulars hydrocarbons of P.elephas ranged from 24 to 36 carbons and incluted n-alkanes, Dimethylalkanes and Trimethylalkanes. nalkanes represented by (C24-C36,72,7% on male and 79,2% on female), internally branched Monomethylalkanes identified were (C25, C30-C32,C35-C37;11% on male and 9,4% on female), Dimethylalkanes detected are (C31-C32, C36; 2,2% on male and 2,06% on female) and Trimethylalkanes detected are (C32, C36; 3,1% on male and 4, 97 on female). Larvae male and female (stage 7) showed the same quality of n-alkanes observed in adults. However a difference quantity is noted.

A Force-directed Graph Drawing based on the Hierarchical Individual Timestep Method

In this paper, we propose a fast and efficient method for drawing very large-scale graph data. The conventional force-directed method proposed by Fruchterman and Rheingold (FR method) is well-known. It defines repulsive forces between every pair of nodes and attractive forces between connected nodes on a edge and calculates corresponding potential energy. An optimal layout is obtained by iteratively updating node positions to minimize the potential energy. Here, the positions of the nodes are updated every global timestep at the same time. In the proposed method, each node has its own individual time and time step, and nodes are updated at different frequencies depending on the local situation. The proposed method is inspired by the hierarchical individual time step method used for the high accuracy calculations for dense particle fields such as star clusters in astrophysical dynamics. Experiments show that the proposed method outperforms the original FR method in both speed and accuracy. We implement the proposed method on the MDGRAPE-3 PCI-X special purpose parallel computer and realize a speed enhancement of several hundred times.

Studies on Race Car Aerodynamics at Wing in Ground Effect

Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds.

Model Inversion of a Two Degrees of Freedom Linearized PUMA from Bicausal Bond Graphs

A bond graph model of a two degrees of freedom PUMA is described. System inversion gives the system input required to generate a given system output. In order to get the system inversion of the PUMA manipulator, a linearization of the nonlinear bond graph is obtained. Hence, the bicausality of the linearized bond graph of the PUMA manipulator is applied. Thus, the bicausal bond graph provides a systematic way of generating the equations of the system inversion. Simulation results to verify the calculated input for a given output are shown.

Forces Association-Based Active Contour

A welded structure must be inspected to guarantee that the weld quality meets the design requirements to assure safety and reliability. However, X-ray image analyses and defect recognition with the computer vision techniques are very complex. Most difficulties lie in finding the small, irregular defects in poor contrast images which requires pre processing to image, extract, and classify features from strong background noise. This paper addresses the issue of designing methodology to extract defect from noisy background radiograph with image processing. Based on the use of actives contours this methodology seems to give good results

Development of Position Changing System for Obstructive Sleep Apnea Patient using HRV

Obstructive sleep apnea in patients, between 70 and 80 percent, can be cured with just a posture correcting. The most import thing to do this is detection of obstructive sleep apnea. Detection of obstructive sleep apnea can be performed through heart rate variability analysis using power spectrum density analysis. After HRV analysis we needed to know the current position information for correcting the position. The pressure sensors of the array type were used to obtain position information. These sensors can obtain information from the experimenter about position. In addition, air cylinder corrected the position of the experimenter by lifting the bed. The experimenter can be changed position without breaking during sleep by the system. Polysomnograph recording were obtained from 10 patients. The results of HRV analysis were that NLF and LF/HF ratio increased, while NHF decreased during OSA. Position change had to be done the periods.

Influence of Apo E Polymorphism on Coronary Artery Disease

The ε4 allele of the ε2, ε3 and ε4 protein isoform polymorphism in the gene encoding apolipoprotein E (Apo E) has previously been associated with increased cardiac artery disease (CAD); therefore to investigate the significance of this polymorphism in pathogenesis of CAD in Iranian patients with stenosis and control subjects. To investigate the association between  Apo E polymorphism and coronary artery disease we performed a comparative case control study of the frequency of Apo E  polymorphism in One hundred CAD patients with stenosis who underwent coronary angiography (>50% stenosis) and 100 control subjects (

Secure Block-Based Video Authentication with Localization and Self-Recovery

Because of the great advance in multimedia technology, digital multimedia is vulnerable to malicious manipulations. In this paper, a public key self-recovery block-based video authentication technique is proposed which can not only precisely localize the alteration detection but also recover the missing data with high reliability. In the proposed block-based technique, multiple description coding MDC is used to generate two codes (two descriptions) for each block. Although one block code (one description) is enough to rebuild the altered block, the altered block is rebuilt with better quality by the two block descriptions. So using MDC increases the ratability of recovering data. A block signature is computed using a cryptographic hash function and a doubly linked chain is utilized to embed the block signature copies and the block descriptions into the LSBs of distant blocks and the block itself. The doubly linked chain scheme gives the proposed technique the capability to thwart vector quantization attacks. In our proposed technique , anyone can check the authenticity of a given video using the public key. The experimental results show that the proposed technique is reliable for detecting, localizing and recovering the alterations.

The Problem of Using the Calculation of the Critical Path to Solver Instances of the Job Shop Scheduling Problem

A procedure commonly used in Job Shop Scheduling Problem (JSSP) to evaluate the neighborhoods functions that use the non-deterministic algorithms is the calculation of the critical path in a digraph. This paper presents an experimental study of the cost of computation that exists when the calculation of the critical path in the solution for instances in which a JSSP of large size is involved. The results indicate that if the critical path is use in order to generate neighborhoods in the meta-heuristics that are used in JSSP, an elevated cost of computation exists in spite of the fact that the calculation of the critical path in any digraph is of polynomial complexity.

A Fuzzy Model and Tool to Analyze SIVD Diseases Using TMS

The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia and to measure the positive effect, if any, of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.

Use of Ecommerce Websites in Developing Countries

The purpose of this study is to investiagte the use of the ecommerce website in Indonesia as a developing country. The ecommerce website has been identified having the significant impact on business activities in particular solving the geographical problem for islanded countries likes Indonesia. Again, website is identified as a crucial marketing tool. This study presents the effect of quality and features on the use and user satisfaction employing ecommerce websites. Survey method for 115 undergraduate students of Management Department in Andalas University who are attending Management Information Systems (SIM) class have been undertaken. The data obtained is analyzed using Structural Equation Modeling (SEM) using SmartPLS program. This result found that quality of system and information, feature as well satisfaction influencing the use ecommerce website in Indonesia contexts.

Alertness States Classification By SOM and LVQ Neural Networks

Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable device.

Virtual Reality for Mutual Understanding in Landscape Planning

This paper argues that fostering mutual understanding in landscape planning is as much about the planners educating stakeholder groups as the stakeholders educating the planners. In other words it is an epistemological agreement as to the meaning and nature of place, especially where an effort is made to go beyond the quantitative aspects, which can be achieved by the phenomenological experience of the Virtual Reality (VR) environment. This education needs to be a bi-directional process in which distance can be both temporal as well as spatial separation of participants, that there needs to be a common framework of understanding in which neither 'side' is disadvantaged during the process of information exchange and it follows that a medium such as VR offers an effective way of overcoming some of the shortcomings of traditional media by taking advantage of continuing technological advances in Information, Technology and Communications (ITC). In this paper we make particular reference to this as an extension to Geographical Information Systems (GIS). VR as a two-way communication tool offers considerable potential particularly in the area of Public Participation GIS (PPGIS). Information rich virtual environments that can operate over broadband networks are now possible and thus allow for the representation of large amounts of qualitative and quantitative information 'side-by-side'. Therefore, with broadband access becoming standard for households and enterprises alike, distributed virtual reality environments have great potential to contribute to enabling stakeholder participation and mutual learning within the planning context.

Effect of Heat Treatment on the Portevin-Le Chatelier Effect of Al-2.5%Mg Alloy

An experimental study is presented on the effect of microstructural change on the Portevin-Le Chatelier effect behaviour of Al-2.5%Mg alloy. Tensile tests are performed on the as received and heat treated (at 400 ºC for 16 hours) samples for a wide range of strain rates. The serrations observed in the stress-time curve are investigated from statistical analysis point of view. Microstructures of the samples are characterized by optical metallography and X-ray diffraction. It is found that the excess vacancy generated due to heat treatment leads to decrease in the strain rate sensitivity and the increase in the number of stress drop occurrences per unit time during the PLC effect. The microstructural parameters like domain size, dislocation density have no appreciable effect on the PLC effect as far as the statistical behavior of the serrations is considered.

Compton Scattering of Annihilation Photons as a Short Range Quantum Key Distribution Mechanism

The angular distribution of Compton scattering of two quanta originating in the annihilation of a positron with an electron is investigated as a quantum key distribution (QKD) mechanism in the gamma spectral range. The geometry of coincident Compton scattering is observed on the two sides as a way to obtain partially correlated readings on the quantum channel. We derive the noise probability density function of a conceptually equivalent prepare and measure quantum channel in order to evaluate the limits of the concept in terms of the device secrecy capacity and estimate it at roughly 1.9 bits per 1 000 annihilation events. The high error rate is well above the tolerable error rates of the common reconciliation protocols; therefore, the proposed key agreement protocol by public discussion requires key reconciliation using classical error-correcting codes. We constructed a prototype device based on the readily available monolithic detectors in the least complex setup.

A Multi-Radio Multi-Channel Unification Power Control for Wireless Mesh Networks

Multi-Radio Multi-Channel Wireless Mesh Networks (MRMC-WMNs) operate at the backbone to access and route high volumes of traffic simultaneously. Such roles demand high network capacity, and long “online" time at the expense of accelerated transmission energy depletion and poor connectivity. This is the problem of transmission power control. Numerous power control methods for wireless networks are in literature. However, contributions towards MRMC configurations still face many challenges worth considering. In this paper, an energy-efficient power selection protocol called PMMUP is suggested at the Link-Layer. This protocol first divides the MRMC-WMN into a set of unified channel graphs (UCGs). A UCG consists of multiple radios interconnected to each other via a common wireless channel. In each UCG, a stochastic linear quadratic cost function is formulated. Each user minimizes this cost function consisting of trade-off between the size of unification states and the control action. Unification state variables come from independent UCGs and higher layers of the protocol stack. The PMMUP coordinates power optimizations at the network interface cards (NICs) of wireless mesh routers. The proposed PMMUP based algorithm converges fast analytically with a linear rate. Performance evaluations through simulations confirm the efficacy of the proposed dynamic power control.