Maxwell-Cattaneo Regularization of Heat Equation

This work focuses on analysis of classical heat transfer equation regularized with Maxwell-Cattaneo transfer law. Computer simulations are performed in MATLAB environment. Numerical experiments are first developed on classical Fourier equation, then Maxwell-Cattaneo law is considered. Corresponding equation is regularized with a balancing diffusion term to stabilize discretizing scheme with adjusted time and space numerical steps. Several cases including a convective term in model equations are discussed, and results are given. It is shown that limiting conditions on regularizing parameters have to be satisfied in convective case for Maxwell-Cattaneo regularization to give physically acceptable solutions. In all valid cases, uniform convergence to solution of initial heat equation with Fourier law is observed, even in nonlinear case.

Graphical Environment for Modeling Control Systems in Full Scope Training Simulators

This paper describes the development of a control system model using a graphical software tool. This control system is part of an operator training simulator developed for the National Training Center for Operators of Ixtapantongo (CNCAOI, acronym according to its name in Spanish language) of the Mexico-s Federal Commission of Electricity, CFE). The Department of Simulation of the Electrical Research Institute (IIE) developed this simulator using as reference the Unit I of the Combined Cycle Power Plant El Sauz, located at the centre of Mexico. The first step in the project was the developing of the Gas Turbine System and its control system simulator. The Turbo Gas simulator was finished and delivered to CNCAOI in March 2007 for commercial operation. This simulator is a high-fidelity real time dynamic simulator built and tested for accurate operation over the entire load range. The simulator was used primarily for operator training although it has been used for procedure development and evaluation of plant transients.

The Effect of Silicon on Cadmium Stress in Echium amoenum

The beneficial effects of Si are mainly associated with its high deposition in plant tissue and enhancing their strength and rigidity. We investigated the role of Si against cadmium stress in (Echium C) in house green condition. When the seventh leaves was be appeared, plants were pretreated with five levels of Si: 0, 0.2, 0.5, 0.7and 1.5 mM Si (as sodium trisilicate, Na2(SiO2)3) and after that plants were treated with two levels of Cd (30 and 90 mM). The effects of Silicon and Cd were investigated on some physiological and biochemical parameters such as: lipid peroxidation (malondialdehyde (MDA) and other aldehydes, antocyanin and flavonoid content. Our results showed that Cd significantly increased MDA, other aldehydes, antocyanin and flavonoids content in Echium and silicon offset the negative effect and increased tolerance of Echium against Cd stress. From this results we concluded that Si increase membrane integrity and antioxidative ability in this plant against cd stress.

The Using of Mixing Amines in an Industrial Gas Sweetening Plant

Natural gas is defined as gas obtained from a natural underground reservoir. It generally contains a large quantity of methane along with heavier hydrocarbons such as ethane, propane, isobutene, normal butane; also in the raw state it often contains a considerable amount of non hydrocarbons, such as nitrogen and the acid gases (carbon dioxide and hydrogen sulfide). The acid gases must be removed from natural gas before use. One of the processes witch are use in the industry to remove the acid gases from natural gas is the use of alkanolamine process. In this present paper, a simulation study for an industrial gas sweetening plant has been investigated. The aim of the study is to investigate the effect of using mixing amines as solvent on the gas treatment process using the software Hysys.

Kinetic model and Simulation Analysis for Propane Dehydrogenation in an Industrial Moving Bed Reactor

A kinetic model for propane dehydrogenation in an industrial moving bed reactor is developed based on the reported reaction scheme. The kinetic parameters and activity constant are fine tuned with several sets of balanced plant data. Plant data at different operating conditions is applied to validate the model and the results show a good agreement between the model predictions and plant observations in terms of the amount of main product, propylene produced. The simulation analysis of key variables such as inlet temperature of each reactor (Tinrx) and hydrogen to total hydrocarbon ratio (H2/THC) affecting process performance is performed to identify the operating condition to maximize the production of propylene. Within the range of operating conditions applied in the present studies, the operating condition to maximize the propylene production at the same weighted average inlet temperature (WAIT) is ΔTinrx1= -2, ΔTinrx2= +1, ΔTinrx3= +1 , ΔTinrx4= +2 and ΔH2/THC= -0.02. Under this condition, the surplus propylene produced is 7.07 tons/day as compared with base case.

New Straw Combustion Technology for Cleaner Energy

We successfully developed a new straw combustion technology that efficiently reduces problems with unmanageable deposits inside straw fueled boilers in Zluticka Heating Plant. The deposits are mainly created by glass-forming melts. We plotted straw compositions in K2O-CaO-SiO2 phase diagram and illustrated they are in the area of low-melting eutectic poi melting of ash and the formation of deposits compositions by injecting additives into biomass fuel ueled points. To prevent the deposits, we modified ash fuel.

Effect of Isfahan Refinery, Power Plant and Petrochemical on Borkhar District Soil

This study aimed to evaluate regional soil Borkhar of the metals Lead has been made. In this field study fires visits to the regions. The limit of this study located in the East refineries, petrochemical and power plant to 20 km was selected. The 41 soil samples from depths of 0 to 10 cm in area and were randomized. Soil samples were transported to the laboratory and by air was dry and passed through 2-mil thickness sieve. In the laboratory of physical and chemical characteristics and concentrations of total absorption was measured. The results showed that the amount of lead in soil in many parts of the range higher than the standard limit. Survey maps show that the lead spatial distribution of the region does not special pattern.

Improvement Plant Layout Using Systematic Layout Planning (SLP) for Increased Productivity

The objective of this research is to study plant layout of iron manufacturing based on the systematic layout planning pattern theory (SLP) for increased productivity. In this case study, amount of equipments and tools in iron production are studied. The detailed study of the plant layout such as operation process chart, flow of material and activity relationship chart has been investigated. The new plant layout has been designed and compared with the present plant layout. The SLP method showed that new plant layout significantly decrease the distance of material flow from billet cutting process until keeping in ware house.

Surviving Abiotic Stress: The Relationship between High Light and High Salt Tolerance

The mechanism of abiotic stress tolerance is crucial for plants to survive in harsh condition and the knowledge of this mechanism can be use to solve the problem of declining productivity of plants or crops around the world. However in-depth description is still unclear and it is argued, in particular that there is a relationship between high salinity tolerance and the ability to tolerate high light condition. In this study, Dunaliella salina, which can withstand high salt was used as a model. Chlorophyll fluorometer for nonphotochemical quenching (NPQ) measurement and high-performance liquid chromatography for pigment determination was used. The results show that NPQ value and the amount of pigment were increased along with the levels of salinity. However, it establish a clear relationship between high salt and high light but the further study to optimized the solutions mentioned above is still required.

Transcritical CO2 Heat Pump Simulation Model and Validation for Simultaneous Cooling and Heating

In the present study, a steady-state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump system for simultaneous water cooling and heating. Both the evaporator (including both two-phase and superheated zone) and gas cooler models consider the highly variable heat transfer characteristics of CO2 and pressure drop. The numerical simulation model of transcritical CO2 heat pump has been validated by test data obtained from experiments on the heat pump prototype. Comparison between the test results and the model prediction for system COP variation with compressor discharge pressure shows a modest agreement with a maximum deviation of 15% and the trends are fairly similar. Comparison for other operating parameters also shows fairly similar deviation between the test results and the model prediction. Finally, the simulation results are presented to study the effects of operating parameters such as, temperature of heat exchanger fluid at the inlet, discharge pressure, compressor speed on system performance of CO2 heat pump, suitable in a dairy plant where simultaneous cooling at 4oC and heating at 73oC are required. Results show that good heat transfer properties of CO2 for both two-phase and supercritical region and efficient compression process contribute a lot for high system COPs.

A Knowledge Engineering Workshop: Application for Choise Car

This paper proposes a declarative language for knowledge representation (Ibn Rochd), and its environment of exploitation (DeGSE). This DeGSE system was designed and developed to facilitate Ibn Rochd writing applications. The system was tested on several knowledge bases by ascending complexity, culminating in a system for recognition of a plant or a tree, and advisors to purchase a car, for pedagogical and academic guidance, or for bank savings and credit. Finally, the limits of the language and research perspectives are stated.

Experimental Studies of Position Control of Linkage based Robotic Finger

The experimental study of position control of a light weight and small size robotic finger during non-contact motion is presented in this paper. The finger possesses fingertip pinching and self adaptive grasping capabilities, and is made of a seven bar linkage mechanism with a slider in the middle phalanx. The control system is tested under the Proportional Integral Derivative (PID) control algorithm and Recursive Least Square (RLS) based Feedback Error Learning (FEL) control scheme to overcome the uncertainties present in the plant. The experiments conducted in Matlab Simulink and xPC Target environments show that the overall control strategy is efficient in controlling the finger movement.

An Adaptive Setting of Frequency Relay with Consideration on Load and Power System Dynamics

This paper presents a new approach for setting frequency relays based on the dynamic of power system. A simplified model of the power system based on the load-frequency control loop will be developed to be used instead of the complete model of the power system. The effects of the equipments and their responses on the frequency variations of the power plant will be investigated and then a method for adaptive settings of frequency relays will be explained. The proposed method will be investigated by analyzing a simplified model of a power plant by MATLAB software.

Automation of Heat Exchanger using Neural Network

In this paper the development of a heat exchanger as a pilot plant for educational purpose is discussed and the use of neural network for controlling the process is being presented. The aim of the study is to highlight the need of a specific Pseudo Random Binary Sequence (PRBS) to excite a process under control. As the neural network is a data driven technique, the method for data generation plays an important role. In light of this a careful experimentation procedure for data generation was crucial task. Heat exchange is a complex process, which has a capacity and a time lag as process elements. The proposed system is a typical pipe-in- pipe type heat exchanger. The complexity of the system demands careful selection, proper installation and commissioning. The temperature, flow, and pressure sensors play a vital role in the control performance. The final control element used is a pneumatically operated control valve. While carrying out the experimentation on heat exchanger a welldrafted procedure is followed giving utmost attention towards safety of the system. The results obtained are encouraging and revealing the fact that if the process details are known completely as far as process parameters are concerned and utilities are well stabilized then feedback systems are suitable, whereas neural network control paradigm is useful for the processes with nonlinearity and less knowledge about process. The implementation of NN control reinforces the concepts of process control and NN control paradigm. The result also underlined the importance of excitation signal typically for that process. Data acquisition, processing, and presentation in a typical format are the most important parameters while validating the results.

The Project of Three Photovoltaic Systems in an Italian Natural Park

The development of renewable energies - particularly energy from wind, water, solar power and biomass - is a central aim of the European Commission's energy policy. There are several reasons for this choice: renewable energies are sustainable, nonpolluting, widely available and clean. Increasing the share of renewable energy in the energy balance enhances sustainability. It also helps to improve the security of energy supply by reducing the Community's growing dependence on imported energy sources.In this paper it was studied the possibility to realize three photovoltaic systems in the Italian Natural Park “Gola della Rossa e di Frasassi". The first photovoltaic system is a grid-connected system for Services and Documentation Center of Castelletta with a nominal power of about 6 kWp. The second photovoltaic system is a grid-connected integrated system on the ticket office-s roof with a nominal power of about 4 kWp. The third project is set up by five grid-connected systems integrated on the roofs of the bungalows in Natural Park-s tourist camping with a nominal power of about 10 kWp. The electricity which is generated by all these plants is purchased according to the Italian program called “Conto Energia". Economical analysis and the amount of the avoided CO2 emissions are elaborated for these photovoltaic systems.

Endothelial Specificity of ICAM2, Flt-1, and Tie2 Promoters In Vitro and In Vivo

To identify an endothelial cell-specific promoter suitable for vascular-specific targeting, we tested five promoters in vitro--Tie2SE, Tie2LE, ICAM2, Flt-1 and vWF--for promoter activity and specificity in endothelial cells, smooth muscle cells and non-vascular resident cells as well as tissues. These promoters, except for vWF, exhibited good endothelial activity and specificity in vitro. In a syngenic heart transplantation model, the ICAM2 promoter was variably functional in coronary endothelial cells of donor hearts. Thus, the ICAM2, Flt-1, Tie2SE and Tie2LE promoters hold promise for endothelial-specific targeting, but in vitro expression may not predict in vivo expression.

Environmental Issues Related to Nuclear Desalination

The paper presents an overview of environmental issues that may be expected with nuclear desalination. The analysis of coupling nuclear power with desalination plants indicates that adverse marine impacts can be mitigated with alternative intake designs or cooling systems. The atmospheric impact of desalination may be greatly reduced through the coupling with nuclear power, while maximizing the socio-economic benefit for both processes. The potential for tritium contamination of the desalinated water was reviewed. Experience with the systems and practices related to the radiological quality of the product water, shows no examples of cross-contamination. Furthermore, the indicators for the public acceptance of nuclear desalination, as one of the most important sustainability aspects of any such large project, show a positive trend. From the data collected, a conclusion is made that nuclear desalination should be supported by decision-makers.

Development of a Model for the Comprehensive Analysis and Evaluation of Service Productivity

Although services play a crucial role in economy, service did not gain as much importance as productivity management in manufacturing. This paper presents key findings from literature and practice. Based on an initial definition of complex services, seven productivity concepts are briefly presented and assessed by relevant, complex service specific criteria. Following the findings a complex service productivity model is proposed. The novel model comprises of all specific dimensions of service provision from both, the provider-s as well as costumer-s perspective. A clear assignment of identified value drivers and relationships between them is presented. In order to verify the conceptual service productivity model a case study from a project engineering department of a chemical plant development and construction company is presented.

Pipelines Monitoring System Using Bio-mimetic Robots

Recently there has been a growing interest in the field of bio-mimetic robots that resemble the behaviors of an insect or an aquatic animal, among many others. One of various bio-mimetic robot applications is to explore pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. Special types of mobile robots are necessary for the pipeline monitoring tasks. In order to move effectively along a pipeline, the robot-s movement will resemble that of insects or crawling animals. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependent on periodical offline monitoring. This paper proposes a monitoring system that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.

Environmental and Technical Modeling of Industrial Solid Waste Management Using Analytical Network Process; A Case Study: Gilan-IRAN

Proper management of residues originated from industrial activities is considered as one of the serious challenges faced by industrial societies due to their potential hazards to the environment. Common disposal methods for industrial solid wastes (ISWs) encompass various combinations of solely management options, i.e. recycling, incineration, composting, and sanitary landfilling. Indeed, the procedure used to evaluate and nominate the best practical methods should be based on environmental, technical, economical, and social assessments. In this paper an environmentaltechnical assessment model is developed using analytical network process (ANP) to facilitate the decision making practice for ISWs generated at Gilan province, Iran. Using the results of performed surveys on industrial units located at Gilan, the various groups of solid wastes in the research area were characterized, and four different ISW management scenarios were studied. The evaluation process was conducted using the above-mentioned model in the Super Decisions software (version 2.0.8) environment. The results indicates that the best ISW management scenario for Gilan province is consist of recycling the metal industries residues, composting the putrescible portion of ISWs, combustion of paper, wood, fabric and polymeric wastes as well as energy extraction in the incineration plant, and finally landfilling the rest of the waste stream in addition with rejected materials from recycling and compost production plants and ashes from the incineration unit.