Spatial Disparity in Education and Medical Facilities: A Case Study of Barddhaman District, West Bengal, India

The economic scenario of any region does not show the real picture for the measurement of overall development. Therefore, economic development must be accompanied by social development to be able to make an assessment to measure the level of development. The spatial variation with respect to social development has been discussed taking into account the quality of functioning of a social system in a specific area. In this paper, an attempt has been made to study the spatial distribution of social infrastructural facilities and analyze the magnitude of regional disparities at inter- block level in Barddhman district. It starts with the detailed account of the selection process of social infrastructure indicators and describes the methodology employed in the empirical analysis. Analyzing the block level data, this paper tries to identify the disparity among the blocks in the levels of social development. The results have been subsequently explained using both statistical analysis and geo spatial technique. The paper reveals that the social development is not going on at the same rate in every part of the district. Health facilities and educational facilities are concentrated at some selected point. So overall development activities come to be concentrated in a few centres and the disparity is seen over the blocks.

Modeling Thermo-Photo-Voltaic Selective Emitter Based on a Semi-Transparent Emitter with Integrated Narrow Band-Pass Pre-Filter

This work is a parametric study combining simple and well known optical theories. These simple theories are arranged to form part of one answer to the question: “Can a semi-transparent Thermo-Photo-Voltaic (TPV) emitter have an optical extinction spectrum so much greater than its optical absorption spectrum that it becomes its own band-pass pre-filter, and if so, how well might it be expected to suppress light of undesired wavelengths?” In the report, hypothetical materials and operating temperatures will be used for comparative analyses only. Thermal emission properties of these hypothetical materials were created using two openly available FORTRAN programs. Results indicate that if using highly transparent materials it may be possible to create a thermal emitter that is its own band-pass pre-filter.

Igbo Art: A Reflection of the Igbo’s Visual Culture

Visual culture is the expression of the norms and social behavior of a society in visual images. A reflection simply shows you how you look when you stand before a mirror, a clear water or stream. The mirror does not alter, improve or distort your original appearance, neither does it show you a caricature of what stands before it, this is the case with visual images created by a tribe or society. The ‘uli’ is hand drawn body design done on Igbo women and speaks of a culture of body adornment which is a practice that is appreciated by that tribe. The use of pattern of the gliding python snake ‘ije eke’ or ‘ijeagwo’ for wall painting speaks of the Igbo culture as one that appreciates wall paintings based on these patterns. Modern life came and brought a lot of change to the Igbo-speaking people of Nigeria. Change cloaked in the garment of Westernization has influenced the culture of the Igbos. This has resulted in a problem which is a break in the cultural practice that has also affected art produced by the Igbos. Before the colonial masters arrived and changed the established culture practiced by the Igbos, visual images were created that retained the culture of this people. To bring this point to limelight, this paper has adopted a historical method. A large number of works produced during pre and post-colonial era which range from sculptural pieces, paintings and other artifacts, just to mention a few, were studied carefully and it was discovered that the visual images hold the culture or aspects of the culture of the Igbos in their renditions and can rightly serve as a mirror of the Igbo visual culture.

Active Imagination: The Effective Factor in the Practice of Psychotherapy

The desire for unequivocal clarity is understandable, but this can make one forget that things of the soul are experiential processes, or transformations, which should never be designated unilaterally if it is not wanted to transform something that moves, a living thing, into something static. Among the so-called ‘things of the soul’ there are especially spontaneous fantasies, that emerge during the processes, as a result from the use of the active imagination technique, for when fantasy is not forced, violated, or subjugated by an illegitimate, intellectually preconceived idea, then it is a legitimate and authentic product of the unconscious mind. This is how one can gain access to unadulterated information about everything that transcends the conscious mind. However, it is vital to discern between ego and non-ego, because this principle will result in a release of energy and a renewal of life, which will come to have meaning. This study will deal with the active imagination as a knowledge that depends on the individual experience of the therapist because the patient will be taken just to reach where the unconscious of the therapist was assimilated to his own conscience. In this way, the therapist becomes the method itself, being his personality, a fundamental part of an effective factor.

Durability of Slurry Infiltrated Fiber Concrete to Corrosion in Chloride Environment: An Experimental Study, Part I

Slurry infiltrated fiber concrete (SIFCON) is considered as a special type of high strength high-performance fiber reinforced concrete, extremely strong, and ductile. The objective of this study is to investigate the durability of SIFCON to corrosion in chloride environments. Six different SIFCON mixes were made in addition to two refinance mixes with 0% and 1.5% steel fiber content. All mixes were exposed to 10% chloride solution for 180 days. Half of the specimens were partially immersed in chloride solution, and the others were exposed to weekly cycles of wetting and drying in 10% chloride solution. The effectiveness of using corrosion inhibitors, mineral admixture, and epoxy protective coating were also evaluated as protective measures to reduce the effect of chloride attack and to improve the corrosion resistance of SIFCON mixes. Corrosion rates, half-cell potential, electrical resistivity, total permeability tests had been monitored monthly. The results indicated a significant improvement in performance for SIFCON mixes exposed to chloride environment, when using corrosion inhibitor or epoxy protective coating, whereas SIFCON mix contained mineral admixture (metakaolin) did not improve the corrosion resistance at the same level. The cyclic wetting and drying exposure were more aggressive to the specimens than the partial immersion in chloride solution although the observed surface corrosion for the later was clearer.

Monomial Form Approach to Rectangular Surface Modeling

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Estimation of Tensile Strength for Granitic Rocks by Using Discrete Element Approach

Tensile strength which is an important parameter of the rock for engineering applications is difficult to measure directly through physical experiment (i.e. uniaxial tensile test). Therefore, indirect experimental methods such as Brazilian test have been taken into consideration and some relations have been proposed in order to obtain the tensile strength for rocks indirectly. In this research, to calculate numerically the tensile strength for granitic rocks, Particle Flow Code in three-dimension (PFC3D) software were used. First, uniaxial compression tests were simulated and the tensile strength was determined for Inada granite (from a quarry in Kasama, Ibaraki, Japan). Then, by simulating Brazilian test condition for Inada granite, the tensile strength was indirectly calculated again. Results show that the tensile strength calculated numerically agrees well with the experimental results obtained from uniaxial tensile tests on Inada granite samples.

Quantification of Biomethane Potential from Anaerobic Digestion of Food Waste at Vaal University of Technology

The global urbanisation and worldwide economic growth have caused a high rate of food waste generation, resulting in environmental pollution. Food waste disposed on landfills decomposes to produce methane (CH4), a greenhouse gas. Inadequate waste management practices contribute to food waste polluting the environment. Thus effective organic fraction of municipal solid waste (OFMSW) management and treatment are attracting widespread attention in many countries. This problem can be minimised by the employment of anaerobic digestion process, since food waste is rich in organic matter and highly biodegradable, resulting in energy generation and waste volume reduction. The current study investigated the Biomethane Potential (BMP) of the Vaal University of Technology canteen food waste using anaerobic digestion. Tests were performed on canteen food waste, as a substrate, with total solids (TS) of 22%, volatile solids (VS) of 21% and moisture content of 78%. The tests were performed in batch reactors, at a mesophilic temperature of 37 °C, with two different types of inoculum, primary and digested sludge. The resulting CH4 yields for both food waste with digested sludge and primary sludge were equal, being 357 Nml/g VS. This indicated that food waste form this canteen is rich in organic and highly biodegradable. Hence it can be used as a substrate for the anaerobic digestion process. The food waste with digested sludge and primary sludge both fitted the first order kinetic model with k for primary sludge inoculated food waste being 0.278 day-1 with R2 of 0.98, whereas k for digested sludge inoculated food waste being 0.034 day-1, with R2 of 0.847.

Clinical Utility of Salivary Cytokines for Children with Attention Deficit Hyperactivity Disorder

The goal of this study was to examine the possibility of salivary cytokines for the screening of attention deficit hyperactivity disorder (ADHD) in children. We carried out a case-control study, including 19 children with ADHD and 17 healthy children (controls). A multiplex bead array immunoassay was used to conduct a multi-analysis of 27 different salivary cytokines. Six salivary cytokines (interleukin (IL)-1β, IL-8, IL12p70, granulocyte colony-stimulating factor (G-CSF), interferon gamma (IFN-γ), and vascular endothelial growth factor (VEGF)) were significantly associated with the presence of ADHD (p < 0.05). An informative salivary cytokine panel was developed using VEGF by logistic regression analysis (odds ratio: 0.251). Receiver operating characteristic analysis revealed that assessment of a panel using VEGF showed “good” capability for discriminating between ADHD patients and controls (area under the curve: 0.778). ADHD has been hypothesized to be associated with reduced cerebral blood flow in the frontal cortex, due to reduced VEGF levels. Our study highlights the possibility of utilizing differential salivary cytokine levels for point-of-care testing (POCT) of biomarkers in children with ADHD.

How Children Synchronize with Their Teacher: Evidence from a Real-World Elementary School Classroom

This paper reports on how synchrony occurs between children and their teacher, and what prevents or facilitates synchrony. The aim of the experiment conducted in this study was to precisely analyze their movements and synchrony and reveal the process of synchrony in a real-world classroom. Specifically, the experiment was conducted for around 20 minutes during an English as a foreign language (EFL) lesson. The participants were 11 fourth-grade school children and their classroom teacher in a public elementary school in Japan. Previous researchers assert that synchrony causes the state of flow in a class. For checking the level of flow, Short Flow State Scale (SFSS) was adopted. The experimental procedure had four steps: 1) The teacher read aloud the first half of an English storybook to the children. Both the teacher and the children were at their own desks. 2) The children were subjected to an SFSS check. 3) The teacher read aloud the remaining half of the storybook to the children. She made the children remove their desks before reading. 4) The children were again subjected to an SFSS check. The movements of all participants were recorded with a video camera. From the movement analysis, it was found that the children synchronized better with the teacher in Step 3 than in Step 1, and that the teacher’s movement became free and outstanding without a desk. This implies that the desk acted as a barrier between the children and the teacher. Removal of this barrier resulted in the children’s reactions becoming synchronized with those of the teacher. The SFSS results proved that the children experienced more flow without a barrier than with a barrier. Apparently, synchrony is what caused flow or social emotions in the classroom. The main conclusion is that synchrony leads to cognitive outcomes such as children’s academic performance in EFL learning.

Evaluation of the Role of Advocacy and the Quality of Care in Reducing Health Inequalities for People with Autism, Intellectual and Developmental Disabilities at Sheffield Teaching Hospitals

Individuals with Autism, Intellectual and Developmental disabilities (AIDD) are one of the most vulnerable groups in society, hampered not only by their own limitations to understand and interact with the wider society, but also societal limitations in perception and understanding. Communication to express their needs and wishes is fundamental to enable such individuals to live and prosper in society. This research project was designed as an organisational case study, in a large secondary health care hospital within the National Health Service (NHS), to assess the quality of care provided to people with AIDD and to review the role of advocacy to reduce health inequalities in these individuals. Methods: The research methodology adopted was as an “insider researcher”. Data collection included both quantitative and qualitative data i.e. a mixed method approach. A semi-structured interview schedule was designed and used to obtain qualitative and quantitative primary data from a wide range of interdisciplinary frontline health care workers to assess their understanding and awareness of systems, processes and evidence based practice to offer a quality service to people with AIDD. Secondary data were obtained from sources within the organisation, in keeping with “Case Study” as a primary method, and organisational performance data were then compared against national benchmarking standards. Further data sources were accessed to help evaluate the effectiveness of different types of advocacy that were present in the organisation. This was gauged by measures of user and carer experience in the form of retrospective survey analysis, incidents and complaints. Results: Secondary data demonstrate near compliance of the Organisation with the current national benchmarking standard (Monitor Compliance Framework). However, primary data demonstrate poor knowledge of the Mental Capacity Act 2005, poor knowledge of organisational systems, processes and evidence based practice applied for people with AIDD. In addition there was poor knowledge and awareness of frontline health care workers of advocacy and advocacy schemes for this group. Conclusions: A significant amount of work needs to be undertaken to improve the quality of care delivered to individuals with AIDD. An operational strategy promoting the widespread dissemination of information may not be the best approach to deliver quality care and optimal patient experience and patient advocacy. In addition, a more robust set of standards, with appropriate metrics, needs to be developed to assess organisational performance which will stand the test of professional and public scrutiny.

A Review on Geomembrane Characteristics and Application in Geotechnical Engineering

This paper represents the basic idea and mechanisms associated with the durability of geomembranes and discusses the factors influencing the service life and temperature of geomembrane liners. Geomembrane durability is stated as field performance and laboratory test outcomes under various conditions. Due to the high demand of geomembranes as landfill barriers and their crucial role in sensitive projects, sufficient service life of geomembranes is very important, therefore in this paper, the durability, the effect of temperature on geomembrane and the role of this type of reinforcement in different types of soil will be discussed. Also, the role of geomembrane in the earthquake will be considered in the last part of the paper.

Assessment of Ultra-High Cycle Fatigue Behavior of EN-GJL-250 Cast Iron Using Ultrasonic Fatigue Testing Machine

High cycle fatigue comprising up to 107 load cycles has been the subject of many studies, and the behavior of many materials was recorded adequately in this regime. However, many applications involve larger numbers of load cycles during the lifetime of machine components. In this ultra-high cycle regime, other failure mechanisms play, and the concept of a fatigue endurance limit (assumed for materials such as steel) is often an oversimplification of reality. When machine component design demands a high geometrical complexity, cast iron grades become interesting candidate materials. Grey cast iron is known for its low cost, high compressive strength, and good damping properties. However, the ultra-high cycle fatigue behavior of cast iron is poorly documented. The current work focuses on the ultra-high cycle fatigue behavior of EN-GJL-250 (GG25) grey cast iron by developing an ultrasonic (20 kHz) fatigue testing system. Moreover, the testing machine is instrumented to measure the temperature and the displacement of  the specimen, and to control the temperature. The high resonance frequency allowed to assess the  behavior of the cast iron of interest within a matter of days for ultra-high numbers of cycles, and repeat the tests to quantify the natural scatter in fatigue resistance.

Association of Smoking with Chest Radiographic and Lung Function Findings in Retired Bauxite Mining Workers

Inhalation hazards are associated with potentially injurious exposure and increased risk for lung diseases, within the bauxite mining industry, especially for the smelter workers. Smoking is related to decreased lung function and leads to chronic lung diseases. This study had the objective to evaluate whether smoking is related to functional and radiographic respiratory changes in retired bauxite mining workers. Methods: This was a retrospective and cross-sectional study involving the analysis of database information of 140 retired bauxite mining workers from Poços de Caldas-MG evaluated at Worker’s Health Reference Center and at the Social Security Brazilian National Institute, from July 1st, 2015 until June 30th, 2016. The workers were divided into three groups: non-smokers (n = 47), ex-smokers (n = 46), and smokers (n = 47). The data included: age, gender, spirometry results, and the presence or not of pulmonary pleural and/or parenchymal changes in chest radiographs. Chi-Squared test was used (p < 0,05). Results: In the smokers’ group, 83% of spirometry tests and 64% of chest x-rays were altered. In the non-smokers’ group, 19% of spirometry tests and 13% of chest x-rays were altered. In the ex-smokers’ group, 35% of spirometry tests and 30% of chest x-rays were altered. Most of the results were statistically significant. Results demonstrated a significant difference between smokers’ and non-smokers’ groups in regard to spirometric and radiographic pulmonary alterations. Ex-smokers’ and non-smokers’ group demonstrated better results when compared to the smokers’ group in relation to altered spirometry and radiograph findings. These data may contribute to planning strategies to enhance smoking cessation programs within the bauxite mining industry.

Conceptual Model for Knowledge Sharing Model in Creating Idea for Mobile Application

This study shows that several projects will be conducted at the workshop in which using the conceptual model for knowledge sharing approach to create an idea for mobile application. The sharing idea has been done through the collaborative activity in which a group of different field sought to define the mobile application which will lead to new media approach of using social media platform. The collaborative activity will be provided and implemented in the form of one day workshop to determine the approach towards the theme given. The activity later will be continued for four weeks for the participant to prepare for the pitch day workshop. This paper shows the pitch of idea including the interface and prototype for the said products. The collaboration between the members with different field of study shows that social media influenced the knowledge sharing model and its creation or innovations. One of the projects supported a collaborative activity in which a group of young designers sought to define the knowledge sharing model of their ability in creating idea for mobile applications.

Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization

PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.

Design a Fractional Order Controller for Power Control of Doubly Fed Induction Generator Based Wind Generation System

During the recent years, much interest has been devoted to fractional order control that has appeared as a very eligible control approach for the systems experiencing parametric uncertainty and outer disturbances. The main purpose of this paper is to design and evaluate the performance of a fractional order proportional integral (FOPI) controller applied to control prototype variable speed wind generation system (WGS) that uses a doubly fed induction generator (DFIG). In this paper, the DFIG-machine is controlled according to the stator field-oriented control (FOC) strategy, which makes it possible to regulate separately the reactive and active powers exchanged between the WGS and the grid. The considered system is modeled and simulated using MATLAB-Simulink, and the performance of FOPI controller applied to the back-to-back power converter control of DFIG based grid connected variable speed wind turbine are evaluated and compared to the ones obtained with a conventional PI controller.

Influence of Alccofine on Semi-Light Weight Concrete under Accelerated Curing and Conventional Curing Regimes

This paper deals with the performance of semi-light weight concrete, prepared by using wood ash pellets as coarse aggregates which were improved by partial replacement of cement with alccofine. Alccofine is a mineral admixture which contains high glass content obtained through the process of controlled granulation. This is finer than cement which carries its own pozzolanic property. Therefore, cement could be replaced by alccofine as 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, and 70% to enhance the strength and durability properties of concrete. High range water reducing admixtures (HRWA) were used in these mixes which were dosed up to 1.5% weight of the total cementitious content (alccofine & cement). It also develops the weaker transition zone into more impermeable layer. Specimens were subjected in both the accelerated curing method as well as conventional curing method. Experimental results were compared and reported, in that the maximum compressive strength of 32.6 MPa was achieved on 28th day with 30% replacement level in a density of 2200 kg/m3 to a conventional curing, while in the accelerated curing, maximum compressive strength was achieved at 40% replacement level. Rapid chloride penetration test (RCPT) output results for the conventional curing method at 0% and 70% give 3296.7 and 545.6 coulombs.

Interactive Effects in Blended Learning Mode: Exploring Hybrid Data Sources and Iterative Linkages

This paper presents an approach for identifying interactive effects using Network Science (NS) supported by Social Network Analysis (SNA) techniques. Based on general observations that learning processes and behaviors are shaped by the social relationships and influenced by learning environment, the central idea was to understand both the human and non-human interactive effects for a blended learning mode of delivery of computer science modules. Important findings include (a) the importance of non-human nodes to influence the centrality and transfer; (b) the degree of non-human and human connectivity impacts learning. This project reveals that the NS pattern and connectivity as measured by node relationships offer alternative approach for hypothesis generation and design of qualitative data collection. An iterative process further reinforces the analysis, whereas the experimental simulation option itself is an interesting alternative option, a hybrid combination of both experimental simulation and qualitative data collection presents itself as a promising and viable means to study complex scenario such as blended learning delivery mode. The primary value of this paper lies in the design of the approach for studying interactive effects of human (social nodes) and non-human (learning/study environment, Information and Communication Technologies (ICT) infrastructures nodes) components. In conclusion, this project adds to the understanding and the use of SNA to model and study interactive effects in blended social learning.

Assessment and Uncertainty Analysis of ROSA/LSTF Test on Pressurized Water Reactor 1.9% Vessel Upper Head Small-Break Loss-of-Coolant Accident

An experiment utilizing the ROSA/LSTF (rig of safety assessment/large-scale test facility) simulated a 1.9% vessel upper head small-break loss-of-coolant accident with an accident management (AM) measure under the total failure of high-pressure injection system of emergency core cooling system in a pressurized water reactor. Steam generator (SG) secondary-side depressurization on the AM measure was started by fully opening relief valves in both SGs when the maximum core exit temperature rose to 623 K. A large increase took place in the cladding surface temperature of simulated fuel rods on account of a late and slow response of core exit thermocouples during core boil-off. The author analyzed the LSTF test by reference to the matrix of an integral effect test for the validation of a thermal-hydraulic system code. Problems remained in predicting the primary coolant distribution and the core exit temperature with the RELAP5/MOD3.3 code. The uncertainty analysis results of the RELAP5 code confirmed that the sample size with respect to the order statistics influences the value of peak cladding temperature with a 95% probability at a 95% confidence level, and the Spearman’s rank correlation coefficient.