Fabrication of High Aluminum Content Mg alloys using a Horizontal Twin Roll Caster

This study was aimed for investigating of manufacturing high aluminum content Mg alloys using a horizontal twin roll caster. Recently, weight saving has been key issues for lighter transport equipments as well as electronic component parts. As alternative materials to aluminum alloys, developing magnesium alloy with higher strength has been expected. Normally high Aluminum content Mg alloy has poor ductility and is difficult to be rolled because of its high strength. However, twin roll casting process is suitable for manufacturing wrought Mg alloys because materials can be cast directly from molten metal. In this study, manufacturing of high aluminum content magnesium alloy sheet using the roll casting process has been carried out. Effects of manufacturing parameter, such as roll velocity, pouring temperature and roll gap, on casting was investigated. A microscopic observation of the crystals of cross section of as cast strip as well as rolled strip was conducted.

Issues in Procurement of Castings

The aim of this paper is to present current and future procedures in castings procurement. Differences in procurement are highlighted. The supplier selection criteria used in practice is compared to literature findings. Different trends related to supply chains are presented and it is described how they are reflected in reality to castings procurement. To fulfil the aim, interviews were conducted in nine companies using castings. It was found that largest casting users have the most subcontractor foundries and it is more typical that they have multiple suppliers for the same parts. Currently only two companies out of nine purchase castings outside Europe, but the others are also progressing in the same direction. The main reason is the need to lower purchasing costs. Another trend is that all companies want to buy cast components or sub-assemblies instead of raw castings from foundries. It was found that price is a main supplier selection criterion. All companies use competitive bidding in supplier selection.

The Effects of Extracorporeal Shockwave Therapy on Pain, Function, Range of Motion and Strength in Patients with Plantar Fasciitis

Ten percent of the population will develop plantar fasciitis (PF) during their lifetime. Two million people are treated yearly accounting for 11-15% of visits to medical professionals. Treatment ranges from conservative to surgical intervention. The purpose of this study was to assess the effects of extracorporeal shockwave therapy (ECSWT) on heel pain, function, range of motion (ROM), and strength in patients with PF. One hundred subjects were treated with ECSWT and measures were taken before and three months after treatment. There was significant differences in visual analog scale scores for pain at rest (p=0.0001); after activity (p= 0.0001) and; overall improvement (p=0.0001). There was also significant improvement in Lower Extremity Functional Scale scores (p=0.0001); ankle plantarflexion (p=0.0001), dorsiflexion (p=0.001), and eversion (p=0.017),and first metatarsophalangeal joint flexion (p=0.002) and extension (p=0.003) ROM. ECSWT is an effective treatment improving heel pain, function and ROM in patients with PF.

A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Development of Condition Monitoring System with Control Functions for Wind Turbines

As an effort to promote wind power industry in Korea, Korea South-East Power Corporation has been developing 22MW YeungHeung wind farm consisting of nine 2 to 3MW wind turbines supplied by three manufacturers. To maximize its availability and reliability and to solve the difficulty of operating three kinds of SCADA systems, Korea Electric Power Corporation has been developing a condition monitoring system integrated with control functions. This paper presents the developed condition monitoring system and its application to YeungHeung wind test bed, and the design of its control functions.

Supply Chain Modeling and Improving Manufacturing Industry in Developing Countries: A Research Agenda

This paper presents a research agenda on the SCOR model adaptation. SCOR model is designated to measure supply chain performance and logistics impact across the boundaries of individual organizations. It is at its growing stage of its life cycle and is enjoying the leverage of becoming the industry standard. The SCOR model has been developed and used widely in developed countries context. This research focuses on the SCOR model adaptation for the manufacturing industry in developing countries. With a necessary understanding of the characteristics, difficulties and problems of the manufacturing industry in developing countries- supply chain; consequently, we will try to designs an adapted model with its building blocks: business process model, performance measures and best practices.

An Evaluation of the Opportunities and Challenges of Wi-Fi Adoption in Malaysian Institutions

There have been many variations of technologies that helped educators in teaching & learning. From the past research it is evident that Information Technology significantly increases student participation and interactivity in the classrooms. This research started with a aim to find whether adoption of Wi-Fi environment by Malaysian Higher Educational Institutions (HEI) can benefit students and staff equally. The study was carried out in HEI-s of Klang Valley, Malaysia and the data is gathered through paper based surveys. A sample size of 237 units were randomly selected from 5 higher educational institutions in the Klang Valley using the Stratified Random sampling method and from the analysis of the data, it was found that the implementation of wireless technologies in HEIs have created lot of opportunities and also challenges.

Ocean Wave Kinetic Energy Harvesting System for Automated Sub Sea Sensors

This paper presents an overview of the Ocean wave kinetic energy harvesting system. Energy harvesting is a concept by which energy is captured, stored, and utilized using various sources by employing interfaces, storage devices, and other units. Ocean wave energy harvesting in which the kinetic and potential energy contained in the natural oscillations of Ocean waves are converted into electric power. The kinetic energy harvesting system could be used for a number of areas. The main applications that we have discussed in this paper are to how generate the energy from Ocean wave energy (kinetic energy) to electric energy that is to eliminate the requirement for continual battery replacement.

GSM Position Tracking using a Kalman Filter

GSM has undoubtedly become the most widespread cellular technology and has established itself as one of the most promising technology in wireless communication. The next generation of mobile telephones had also become more powerful and innovative in a way that new services related to the user-s location will arise. Other than the 911 requirements for emergency location initiated by the Federal Communication Commission (FCC) of the United States, GSM positioning can be highly integrated in cellular communication technology for commercial use. However, GSM positioning is facing many challenges. Issues like accuracy, availability, reliability and suitable cost render the development and implementation of GSM positioning a challenging task. In this paper, we investigate the optimal mobile position tracking means. We employ an innovative scheme by integrating the Kalman filter in the localization process especially that it has great tracking characteristics. When tracking in two dimensions, Kalman filter is very powerful due to its reliable performance as it supports estimation of past, present, and future states, even when performing in unknown environments. We show that enhanced position tracking results is achieved when implementing the Kalman filter for GSM tracking.

Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process

This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.

Cutaneous Application of Royal Jelly Inhibits Skin Lesions in NC/Nga Mice, a Human-Like Mouse Model of Atopic Dermatitis

Anti-allergic effects of royal jelly were evaluated in a human-like mouse model of atopic dermatitis. NC/Nga mice were cutaneously applied with royal jelly for 6 weeks. Royal jelly-treated mice exhibited lower levels of serum total immunoglobulin E in comparison with controls. We found that the treatment decreased (11% to the control) expression of mRNA for aquaporin-3, which is involved in the modulation of epidermal hydration. Microarray analysis revealed more than 10-fold changes in the expression of several genes, such as transglutaminase 2, repetin, and keratins. In normal human epidermal keratinocytes, royal jelly extract suppressed interleukin-8 elevation induced by TNF-α and interferon-γ, suggesting direct anti-inflammatory activity in keratinocytes. Collectively, topical application of royal jelly may be useful for amelioration of lesions and inflammation in atopic dermatitis.

Determining the Maximum Lateral Displacement Due to Sever Earthquakes without Using Nonlinear Analysis

For Seismic design, it is important to estimate, maximum lateral displacement (inelastic displacement) of the structures due to sever earthquakes for several reasons. Seismic design provisions estimate the maximum roof and storey drifts occurring in major earthquakes by amplifying the drifts of the structures obtained by elastic analysis subjected to seismic design load, with a coefficient named “displacement amplification factor" which is greater than one. Here, this coefficient depends on various parameters, such as ductility and overstrength factors. The present research aims to evaluate the value of the displacement amplification factor in seismic design codes and then tries to propose a value to estimate the maximum lateral structural displacement from sever earthquakes, without using non-linear analysis. In seismic codes, since the displacement amplification is related to “force reduction factor" hence; this aspect has been accepted in the current study. Meanwhile, two methodologies are applied to evaluate the value of displacement amplification factor and its relation with the force reduction factor. In the first methodology, which is applied for all structures, the ratio of displacement amplification and force reduction factors is determined directly. Whereas, in the second methodology that is applicable just for R/C moment resisting frame, the ratio is obtained by calculating both factors, separately. The acquired results of these methodologies are alike and estimate the ratio of two factors from 1 to 1.2. The results indicate that the ratio of the displacement amplification factor and the force reduction factor differs to those proposed by seismic provisions such as NEHRP, IBC and Iranian seismic code (standard no. 2800).

Nonlinear Torque Control for PMSM: A Lyapunov Technique Approach

This study presents a novel means of designing a simple and effective torque controller for Permanent Magnet Synchronous Motor (PMSM). The overall stability of the system is shown using Lyapunov technique. The Lyapunov functions used contain a term penalizing the integral of the tracking error, enhancing the stability. The tracking error is shown to be globally uniformly bounded. Simulation results are presented to show the effectiveness of the approach.

Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds

Among the many promising nanomaterials with antifungal properties, metal nanoparticles (silver nanoparticles) stand out due to their high chemical activity. Therefore, the aim of this study was to evaluate the effect of silver nanoparticles (AgNPs) against Phomopsis sp. AgNPs were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. The synthesized AgNPs have further been characterized by UV/Visible spectroscopy, Biophysical techniques like Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM). The average diameter of the prepared silver colloidal nanoparticles was about 52 nm. Absolute inhibitions (100%) were observed on treated with a 270 and 540 µg ml-1 concentration of AgNPs. The results from the study of the AgNPs antifungal effect are significant and suggest that the synthesized silver nanoparticles may have an advantage compared with conventional fungicides.

A Stable Pose Estimation Method for the Biped Robot using Image Information

This paper proposes a balance control scheme for a biped robot to trace an arbitrary path using image information. While moving, it estimates the zero moment point(ZMP) of the biped robot in the next step using a Kalman filter and renders an appropriate balanced pose of the robot. The ZMP can be calculated from the robot's pose, which is measured from the reference object image acquired by a CCD camera on the robot's head. For simplifying the kinematical model, the coordinates systems of individual joints of each leg are aligned and the robot motion is approximated as an inverted pendulum so that a simple linear dynamics, 3D-LIPM(3D-Linear Inverted Pendulum Mode) can be applied. The efficiency of the proposed algorithm has been proven by the experiments performed on unknown trajectory.

Regeneration of Spent Catalysts with Ozone

This study investigates the in-situ regeneration of deactivated Pt-Pd catalyst in a laboratory-scale catalysis reactor. Different regeneration conditions are tested and the activity and characteristics of regenerated catalysts are analyzed. Experimental results show that the conversion efficiencies of C3H6 by different regenerated Pt-Pd catalysts were significantly improved from 77%, 55% and 41% to 86%, 98% and 99%, respectively. The best regeneration conditions was 52ppm ozone, 500oC, and 10min. Regeneration temperature has more influences than ozone concentration and regeneration time. With the comparisons of characteristics of deactivated catalyst and regenerated catalyst, the major poison species (carbon, metals, chloride, and sulfate) on the spent catalysts can be effectively removed by ozone regeneration. 

Iteration Acceleration for Nonlinear Coupled Parabolic-Hyperbolic System

A Picard-Newton iteration method is studied to accelerate the numerical solution procedure of a class of two-dimensional nonlinear coupled parabolic-hyperbolic system. The Picard-Newton iteration is designed by adding higher-order terms of small quantity to an existing Picard iteration. The discrete functional analysis and inductive hypothesis reasoning techniques are used to overcome difficulties coming from nonlinearity and coupling, and theoretical analysis is made for the convergence and approximation properties of the iteration scheme. The Picard-Newton iteration has a quadratic convergent ratio, and its solution has second order spatial approximation and first order temporal approximation to the exact solution of the original problem. Numerical tests verify the results of the theoretical analysis, and show the Picard-Newton iteration is more efficient than the Picard iteration.

Corporate Governance Practices and Analysts Forecast Accuracy Evidence for Romania

In the last few years, several steps were taken in order to improve the quality of corporate governance for Romanian listed companies. Higher standards of corporate governance is documented in the literature to lead to a better information environment, and, consequently, to increase analysts forecast accuracy. Accordingly, the purpose of this paper is to investigate the extent to which corporate governance policies affect analysts forecasts for companies listed on Bucharest Stock Exchange. The results showed that there is indeed a negative correlation between a corporate governance index – used as a proxy for the quality of corporate governance practices - and analysts forecast errors.

Optimization of Human Comfort Reaction for Suspended Cabin Tractor Semitrailer Drivers

This work has been conducted to study on comfort level of drivers of suspended cabin tractor semitrailer. Some drivers suffer from low back pain caused by vibration. The practical significance of applying suspended cabin type of tractor semi trailer was tested at different road conditions, different speed as well as different load conditions for comfortable driver seat interface (x, y, z ) and the process parameters have been prioritized using Taguchi-s L27 orthogonal array. Genetic Algorithm (GA) is used to optimize the human comfort vibration of suspended cabin tractor semitrailer drivers. The practical significance of applying GA to human comfort to reaction of suspended cabin tractor semitrailer has been validated by means of computing the deviation between predicted and experimentally obtained human comfort to vibration. The optimized acceleration data indicate a little uncomfortable ride for suspended cabin tractor semitrailer.

Influence of Paralleled Capacitance Effect in Well-defined Multiple Value Logical Level System with Active Load

Three similar negative differential resistance (NDR) profiles with both high peak to valley current density ratio (PVCDR) value and high peak current density (PCD) value in unity resonant tunneling electronic circuit (RTEC) element is developed in this paper. The PCD values and valley current density (VCD) values of the three NDR curves are all about 3.5 A and 0.8 A, respectively. All PV values of NDR curves are 0.40 V, 0.82 V, and 1.35 V, respectively. The VV values are 0.61 V, 1.07 V, and 1.69 V, respectively. All PVCDR values reach about 4.4 in three NDR curves. The PCD value of 3.5 A in triple PVCDR RTEC element is better than other resonant tunneling devices (RTD) elements. The high PVCDR value is concluded the lower VCD value about 0.8 A. The low VCD value is achieved by suitable selection of resistors in triple PVCDR RTEC element. The low PV value less than 1.35 V possesses low power dispersion in triple PVCDR RTEC element. The designed multiple value logical level (MVLL) system using triple PVCDR RTEC element provides equidistant logical level. The logical levels of MVLL system are about 0.2 V, 0.8 V, 1.5 V, and 2.2 V from low voltage to high voltage and then 2.2 V, 1.3 V, 0.8 V, and 0.2 V from high voltage back to low voltage in half cycle of sinusoid wave. The output level of four levels MVLL system is represented in 0.3 V, 1.1 V, 1.7 V, and 2.6 V, which satisfies the NMP condition of traditional two-bit system. The remarkable logical characteristic of improved MVLL system with paralleled capacitor are with four significant stable logical levels about 220 mV, 223 mV, 228 mV, and 230 mV. The stability and articulation of logical levels of improved MVLL system are outstanding. The average holding time of improved MVLL system is approximately 0.14 μs. The holding time of improved MVLL system is fourfold than of basic MVLL system. The function of additional capacitor in the improved MVLL system is successfully discovered.