Optimal Design of Selective Excitation Pulses in Magnetic Resonance Imaging using Genetic Algorithms

The proper design of RF pulses in magnetic resonance imaging (MRI) has a direct impact on the quality of acquired images, and is needed for many applications. Several techniques have been proposed to obtain the RF pulse envelope given the desired slice profile. Unfortunately, these techniques do not take into account the limitations of practical implementation such as limited amplitude resolution. Moreover, implementing constraints for special RF pulses on most techniques is not possible. In this work, we propose to develop an approach for designing optimal RF pulses under theoretically any constraints. The new technique will pose the RF pulse design problem as a combinatorial optimization problem and uses efficient techniques from this area such as genetic algorithms (GA) to solve this problem. In particular, an objective function will be proposed as the norm of the difference between the desired profile and the one obtained from solving the Bloch equations for the current RF pulse design values. The proposed approach will be verified using analytical solution based RF simulations and compared to previous methods such as Shinnar-Le Roux (SLR) method, and analysis, selected, and tested the options and parameters that control the Genetic Algorithm (GA) can significantly affect its performance to get the best improved results and compared to previous works in this field. The results show a significant improvement over conventional design techniques, select the best options and parameters for GA to get most improvement over the previous works, and suggest the practicality of using of the new technique for most important applications as slice selection for large flip angles, in the area of unconventional spatial encoding, and another clinical use.

Two Phase Frictional Pressure Drop of Carbon Dioxide in Horizontal Micro Tubes

Two-phase frictional pressure drop data were obtained for condensation of carbon dioxide in single horizontal micro tube of inner diameter ranged from 0.6 mm up to 1.6 mm over mass flow rates from 2.5*10-5 to 17*10-5 kg/s and vapor qualities from 0.0 to 1.0. The inlet condensing pressure is changed from 33.5 to 45 bars. The saturation temperature ranged from -1.5 oC up to 10 oC. These data have then been compared against three (two-phase) frictional pressure drop prediction methods. The first method is by Muller-Steinhagen and Heck (Muller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process 1986;20:297–308) and that by Gronnerud R. Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type evaporators, part IV: two-phase flow resistance in boiling refrigerants, Annexe 1972. Then the method used by FriedelL. Improved friction pressures drop in horizontal and vertical two-phase pipe flow. European Two-Phase Flow Group Meeting, Paper E2; 1979 June, Ispra, Italy. The methods are used by M.B Ould Didi et al (2001) “Prediction of two-phase pressure gradients of refrigerant in horizontal tubes". Int.J.of Refrigeration 25(2002) 935- 947. The best available method for annular flow was that of Muller- Steinhagen and Heck. It was observed that the peak in the two-phase frictional pressure gradient is at high vapor qualities.

A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification

The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering and Apriori algorithm technique, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-squares fit and a conjugate gradient descent algorithm towards better performance with a minimal set of rules. The proposed MAFIE is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance of the proposed MAFIE is compared with other existing applications of pattern classification schemes using Fisher-s Iris and Wisconsin breast cancer data sets and shown to be very competitive.

Fabrication of High Aluminum Content Mg alloys using a Horizontal Twin Roll Caster

This study was aimed for investigating of manufacturing high aluminum content Mg alloys using a horizontal twin roll caster. Recently, weight saving has been key issues for lighter transport equipments as well as electronic component parts. As alternative materials to aluminum alloys, developing magnesium alloy with higher strength has been expected. Normally high Aluminum content Mg alloy has poor ductility and is difficult to be rolled because of its high strength. However, twin roll casting process is suitable for manufacturing wrought Mg alloys because materials can be cast directly from molten metal. In this study, manufacturing of high aluminum content magnesium alloy sheet using the roll casting process has been carried out. Effects of manufacturing parameter, such as roll velocity, pouring temperature and roll gap, on casting was investigated. A microscopic observation of the crystals of cross section of as cast strip as well as rolled strip was conducted.

Issues in Procurement of Castings

The aim of this paper is to present current and future procedures in castings procurement. Differences in procurement are highlighted. The supplier selection criteria used in practice is compared to literature findings. Different trends related to supply chains are presented and it is described how they are reflected in reality to castings procurement. To fulfil the aim, interviews were conducted in nine companies using castings. It was found that largest casting users have the most subcontractor foundries and it is more typical that they have multiple suppliers for the same parts. Currently only two companies out of nine purchase castings outside Europe, but the others are also progressing in the same direction. The main reason is the need to lower purchasing costs. Another trend is that all companies want to buy cast components or sub-assemblies instead of raw castings from foundries. It was found that price is a main supplier selection criterion. All companies use competitive bidding in supplier selection.

Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines

This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.

A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Research of Dynamic Location Referencing Method Based On Intersection and Link Partition

Dynamic location referencing method is an important technology to shield map differences. These method references objects of the road network by utilizing condensed selection of its real-world geographic properties stored in a digital map database, which overcomes the defections existing in pre-coded location referencing methods. The high attributes completeness requirements and complicated reference point selection algorithm are the main problems of recent researches. Therefore, a dynamic location referencing algorithm combining intersection points selected at the extremities compulsively and road link points selected according to link partition principle was proposed. An experimental system based on this theory was implemented. The tests using Beijing digital map database showed satisfied results and thus verified the feasibility and practicability of this method.

Comparative Evaluation of Ice Adhesion Behavior

In this study, the adhesion of ice to solid substrates with different surface properties is compared. Clear ice, similar to atmospheric in-flight icing encounters, is accreted on the different substrates under controlled conditions. The ice adhesion behavior is investigated by means of a dynamic vibration testing technique with an electromagnetic shaker initiating ice de-bonding in the interface between the substrate and the ice. The results of the experiments reveal that the affinity for ice accretion is significantly influenced by the water contact angle of the respective sample.

Sliding-Mode Control of a Permanent-Magnet Synchronous Motor with Uncertainty Estimation

In this paper, the application of sliding-mode control to a permanent-magnet synchronous motor (PMSM) is presented. The control design is based on a generic mathematical model of the motor. Some dynamics of the motor and of the power amplification stage remain unmodelled. This model uncertainty is estimated in realtime. The estimation is based on the differentiation of measured signals using the ideas of robust exact differentiator (RED). The control law is implemented on an industrial servo drive. Simulations and experimental results are presented and compared to the same control strategy without uncertainty estimation. It turns out that the proposed concept is superior to the same control strategy without uncertainty estimation especially in the case of non-smooth reference signals.

Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process

This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.

Cutaneous Application of Royal Jelly Inhibits Skin Lesions in NC/Nga Mice, a Human-Like Mouse Model of Atopic Dermatitis

Anti-allergic effects of royal jelly were evaluated in a human-like mouse model of atopic dermatitis. NC/Nga mice were cutaneously applied with royal jelly for 6 weeks. Royal jelly-treated mice exhibited lower levels of serum total immunoglobulin E in comparison with controls. We found that the treatment decreased (11% to the control) expression of mRNA for aquaporin-3, which is involved in the modulation of epidermal hydration. Microarray analysis revealed more than 10-fold changes in the expression of several genes, such as transglutaminase 2, repetin, and keratins. In normal human epidermal keratinocytes, royal jelly extract suppressed interleukin-8 elevation induced by TNF-α and interferon-γ, suggesting direct anti-inflammatory activity in keratinocytes. Collectively, topical application of royal jelly may be useful for amelioration of lesions and inflammation in atopic dermatitis.

The Chemical Composition of Yoghurt Enriched with Flakes from Biologically Activated Hullless Barley Grain and Malt Extract

The influence of flakes from biologically activated hull-less barley grain and malt extract on chemical composition of yoghurt was studied. Pasteurized milk, freeze-dried yoghurt culture YF-L811 (Chr. Hansen, Denmark), flakes from biologically activated hull-less barley grain (Latvia) and malt extract (Ilgezeem, Latvia) were used for experiments. Yoghurt samples with and without flakes from biologically activated hull-less barley grain and malt extract were analyzed for content of total solids, total proteins, fats, amino acids and riboflavin. The addition of flakes from biologically activated hull-less barley grain and malt extract allowed increase of nutritional value of yoghurt samples. There was obtained the increase of total proteins (p>0.05) and the decrease of fat (p>0.05). The presence of flakes from biologically activated hull-less barley grain and malt extract in yoghurt samples provided significant increase of amino acids amount (p

Computationally Efficient Adaptive Rate Sampling and Adaptive Resolution Analysis

Mostly the real life signals are time varying in nature. For proper characterization of such signals, time-frequency representation is required. The STFT (short-time Fourier transform) is a classical tool used for this purpose. The limitation of the STFT is its fixed time-frequency resolution. Thus, an enhanced version of the STFT, which is based on the cross-level sampling, is devised. It can adapt the sampling frequency and the window function length by following the input signal local variations. Therefore, it provides an adaptive resolution time-frequency representation of the input. The computational complexity of the proposed STFT is deduced and compared to the classical one. The results show a significant gain of the computational efficiency and hence of the processing power. The processing error of the proposed technique is also discussed.

Antifungal Activity of Silver Colloidal Nanoparticles against Phytopathogenic Fungus (Phomopsis sp.) in Soybean Seeds

Among the many promising nanomaterials with antifungal properties, metal nanoparticles (silver nanoparticles) stand out due to their high chemical activity. Therefore, the aim of this study was to evaluate the effect of silver nanoparticles (AgNPs) against Phomopsis sp. AgNPs were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. The synthesized AgNPs have further been characterized by UV/Visible spectroscopy, Biophysical techniques like Dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM). The average diameter of the prepared silver colloidal nanoparticles was about 52 nm. Absolute inhibitions (100%) were observed on treated with a 270 and 540 µg ml-1 concentration of AgNPs. The results from the study of the AgNPs antifungal effect are significant and suggest that the synthesized silver nanoparticles may have an advantage compared with conventional fungicides.

Regeneration of Spent Catalysts with Ozone

This study investigates the in-situ regeneration of deactivated Pt-Pd catalyst in a laboratory-scale catalysis reactor. Different regeneration conditions are tested and the activity and characteristics of regenerated catalysts are analyzed. Experimental results show that the conversion efficiencies of C3H6 by different regenerated Pt-Pd catalysts were significantly improved from 77%, 55% and 41% to 86%, 98% and 99%, respectively. The best regeneration conditions was 52ppm ozone, 500oC, and 10min. Regeneration temperature has more influences than ozone concentration and regeneration time. With the comparisons of characteristics of deactivated catalyst and regenerated catalyst, the major poison species (carbon, metals, chloride, and sulfate) on the spent catalysts can be effectively removed by ozone regeneration. 

A Study on the Performance Characteristics of Variable Valve for Reverse Continuous Damper

Nowadays, a passenger car suspension must has high performance criteria with light weight, low cost, and low energy consumption. Pilot controlled proportional valve is designed and analyzed to get small pressure change rate after blow-off, and to get a fast response of the damper, a reverse damping mechanism is adapted. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from the tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping forces can be tuned independently, of which the variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20 N, linearity, and variance of damping force. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through a real car test.

Corporate Governance Practices and Analysts Forecast Accuracy Evidence for Romania

In the last few years, several steps were taken in order to improve the quality of corporate governance for Romanian listed companies. Higher standards of corporate governance is documented in the literature to lead to a better information environment, and, consequently, to increase analysts forecast accuracy. Accordingly, the purpose of this paper is to investigate the extent to which corporate governance policies affect analysts forecasts for companies listed on Bucharest Stock Exchange. The results showed that there is indeed a negative correlation between a corporate governance index – used as a proxy for the quality of corporate governance practices - and analysts forecast errors.

Study on the Derivatization Process Using N-O-bis-(trimethylsilyl)-trifluoroacetamide,N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide, Trimethylsilydiazomethane for the Determination of Fecal Sterols by Gas Chromatography-Mass Spectrometry

Fecal sterol has been proposed as a chemical indicator of human fecal pollution even when fecal coliform populations have diminished due to water chlorination or toxic effects of industrial effluents. This paper describes an improved derivatization procedure for simultaneous determination of four fecal sterols including coprostanol, epicholestanol, cholesterol and cholestanol using gas chromatography-mass spectrometry (GC-MS), via optimization study on silylation procedures using N-O-bis (trimethylsilyl)-trifluoroacetamide (BSTFA), and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA), which lead to the formation of trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBS) derivatives, respectively. Two derivatization processes of injection-port derivatization and water bath derivatization (60 oC, 1h) were inspected and compared. Furthermore, the methylation procedure at 25 oC for 2h with trimethylsilydiazomethane (TMSD) for fecal sterols analysis was also studied. It was found that most of TMS derivatives demonstrated the highest sensitivities, followed by methylated derivatives. For BSTFA or MTBSTFA derivatization processes, the simple injection-port derivatization process could achieve the same efficiency as that in the tedious water bath derivatization procedure.

Optimization of Human Comfort Reaction for Suspended Cabin Tractor Semitrailer Drivers

This work has been conducted to study on comfort level of drivers of suspended cabin tractor semitrailer. Some drivers suffer from low back pain caused by vibration. The practical significance of applying suspended cabin type of tractor semi trailer was tested at different road conditions, different speed as well as different load conditions for comfortable driver seat interface (x, y, z ) and the process parameters have been prioritized using Taguchi-s L27 orthogonal array. Genetic Algorithm (GA) is used to optimize the human comfort vibration of suspended cabin tractor semitrailer drivers. The practical significance of applying GA to human comfort to reaction of suspended cabin tractor semitrailer has been validated by means of computing the deviation between predicted and experimentally obtained human comfort to vibration. The optimized acceleration data indicate a little uncomfortable ride for suspended cabin tractor semitrailer.