Evaluation of Water Quality of the Surface Water of the Damietta Nile Branch, Damietta Governorate, Egypt

Water quality and heavy metals pollution of the Damietta Nile Branch at Damietta governorate were investigated in the current work. Fourteen different sampling points were selected along the Damietta Nile branch from Ras EL-Bar (sample 1) to Sheremsah (sample 14). Physical and chemical parameters and the concentrations of Cd, Cr, Cu, Ni, Fe, Al, Hg, Pb and Zn were investigated for water quality assessment of Damietta Nile Branch at Damietta Governorate. Most of the samples show that the water is suitable for drinking and irrigation purposes. All locations of samples near the sea are unsuitable water but the samples in the south direction away from the sea are suitable or good water for drinking and irrigation.

Technologies of Isolation and Separation of Anthraquinone Derivatives

In review the generalized data about different methods of extraction, separation and purification of natural and modify anthraquinones is presented. The basic regularity of an isolation process is analyzed. Action of temperature, pH, and polarity of extragent, catalysts and other factors on an isolation process is revealed.

Development of Moving Multifocal Electroretinogram with a Precise Perimetry Apparatus

A decline in visual sensitivity at arbitrary points on the retina can be measured using a precise perimetry apparatus along with a fundus camera. However, the retinal layer associated with this decline cannot be identified accurately with current medical technology. To investigate cryptogenic diseases, such as macular dystrophy, acute zonal occult outer retinopathy (AZOOR), and multiple evanescent white dot syndrome (MEWDS), we evaluated an electroretinogram (ERG) function that allows moving the center of the multifocal hexagonal stimulus array to a chosen position. Macular dystrophy is a generalized term used for a variety of functional disorders of the macula lutea, and the ERG shows a diminution of the b-wave in these disorders. AZOOR causes an acute functional disorder to an outer layer of the retina, and the ERG shows a-wave and b-wave amplitude reduction as well as delayed 30 Hz flicker responses. MEWDS causes acute visual loss and the ERG shows a decrease in a-wave amplitude. We combined an electroretinographic optical system and a perimetric optical system into an experimental apparatus that has the same optical system as that of a fundus camera. We also deployed an EO-50231 Edmund infrared camera, a 45-degree cold mirror, a lens with a 25-mm focal length, a halogen lamp, and an 8-inch monitor. Then, we also employed a differential amplifier with gain 10, a 50 Hz notch filter, a high-pass filter with a 21.2 Hz cut-off frequency, and two non-inverting amplifiers with gains 1001 and 11. In addition, we used a USB-6216 National Instruments I/O device, a NE-113A Nihon Kohden plate electrode, a SCB-68A shielded connector block, and LabVIEW 2017 software for data retrieval. The software was used to generate the multifocal hexagonal stimulus array on the computer monitor with C++Builder 10.2 and to move the center of the array toward the left and right and up and down. Cone and bright flash ERG results were observed using the moving ERG function. The a-wave, b-wave, c-wave, and the photopic negative response were identified with cone ERG. The moving ERG function allowed the identification of the retinal layer causing visual alterations.

Neural Network Based Speech to Text in Malay Language

Speech to text in Malay language is a system that converts Malay speech into text. The Malay language recognition system is still limited, thus, this paper aims to investigate the performance of ten Malay words obtained from the online Malay news. The methodology consists of three stages, which are preprocessing, feature extraction, and speech classification. In preprocessing stage, the speech samples are filtered using pre emphasis. After that, feature extraction method is applied to the samples using Mel Frequency Cepstrum Coefficient (MFCC). Lastly, speech classification is performed using Feedforward Neural Network (FFNN). The accuracy of the classification is further investigated based on the hidden layer size. From experimentation, the classifier with 40 hidden neurons shows the highest classification rate which is 94%.  

Evaluation of the Execution Effect of the Minimum Grain Purchase Price in Rural Areas

This paper uses the analytic hierarchy process to study the execution effect of the minimum purchase price of grain in different regions and various grain crops. Firstly, for different regions, five indicators including grain yield, grain sown area, gross agricultural production, grain consumption price index, and disposable income of rural residents were selected to construct an evaluation index system. We collect data of six provinces including Hebei Province, Heilongjiang Province and Shandong Province from 2006 to 2017. Then, the judgment matrix is constructed, and the hierarchical single ordering and consistency test are carried out to determine the scoring standard for the minimum purchase price of grain. The ranking of the execution effect from high to low is: Heilongjiang Province, Shandong Province, Hebei Province, Guizhou Province, Shaanxi Province, and Guangdong Province. Secondly, taking Shandong Province as an example, we collect the relevant data of sown area and yield of cereals, beans, potatoes and other crops from 2006 to 2017. The weight of area and yield index is determined by expert scoring method. And the average sown area and yield of cereals, beans and potatoes in 2006-2017 were calculated, respectively. On this basis, according to the sum of products of weights and mean values, the execution effects of different grain crops are determined. It turns out that among the cereals, the minimum purchase price had the best execution effect on paddy, followed by wheat and finally maize. Moreover, among major categories of crops, cereals perform best, followed by beans and finally potatoes. Lastly, countermeasures are proposed for different regions, various categories of crops, and different crops of the same category.

Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition

This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.

The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data

This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.

Length Dimension Correlates of Longitudinal Physical Conditioning on Indian Male Youth

Various length dimensions of the body have been a variable of interest in the research areas of kinanthropometry. However the inclusion of length measurements in various studies remains restricted to reflect characteristics of a particular game/sport at a particular time. Hence, the present investigation was conducted to study various length dimensions correlates of a longitudinal physical conditioning program on Indian male youth. The study was conducted on 90 Indian male youth. The sample was equally divided into three groups namely, progressive load training (PLT), constant load training (CLT) and no load training (NL). The variables included sitting height, leg length, arm length and foot length. The study was conducted by adopting the multi group repeated measure design. Three different groups were measured four times after completion of each of the three meso-cycles of six-weeks duration each. The measurements were taken using the standard landmarks and procedures. Mean, standard deviation and analysis of co-variance were computed to analyze the data statistically. The post-hoc analysis was conducted for the significant F-ratios at 0.05 level. The study concluded that the followed longitudinal physical conditioning program had significant effect on various length dimensions of Indian male youth.

Dynamic Study on the Evaluation of the Settlement of Soil under Sea Dam

In order to study the variation in settlement of soil under a dyke dam, the modelisation in our study consists of applying an imposed displacement at the base of the mass of soil (consisting of a saturated sand). The imposed displacement follows the evolution of acceleration of the earthquake of Boumerdes 2003 in Algeria. Moreover, the gravity load is taken into consideration by taking account the specific weight of the materials constituting the dyke. The results obtained show that the gravity loads have a direct influence on the evolution of settlement, especially at the center of the dyke where these loads are higher.

A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition

This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Electrochemical Response Transductions of Graphenated-Polyaniline Nanosensor for Environmental Anthracene

A graphenated–polyaniline (GR-PANI) nanocomposite sensor was constructed and used for the determination of anthracene. The direct electro-oxidation behavior of anthracene on the GR-PANI modified glassy carbon electrode (GCE) was used as the sensing principle. The results indicate thatthe response profile of the oxidation of anthracene on GR-PANI-modified GCE provides for the construction of sensor systems based onamperometric and potentiometric signal transductions. A dynamic linear range of 0.12- 100 µM anthracene and a detection limit of 0.044 µM anthracene were established for the sensor system.

Vision Based People Tracking System

In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.

Assessment of Knowledge, Attitudes and Practices of Street Vendors in Mangaung Metro South Africa

Microbial contamination of ready-to-eat foods and beverages sold by street vendors has become an important public health issue. In developing countries including South Africa, health risks related to such kinds of foods are thought to be common. Thus, this study assessed knowledge, attitude and practices of street food vendors. Street vendors in the city of Mangaung Metro were investigated in order to assess their knowledge, attitudes and handling practices. A semi-structured questionnaire and checklist were used in interviews to determine the status of the vending sites and associa. ted food-handling practices. Data was collected by means of a face-to-face interview. The majority of respondents were black females. Hundred percent (100%) of the participants did not have any food safety training. However, street vendors showed a positive attitude towards food safety. Despite the positive attitude, vendors showed some non-compliance when it comes to handling food. During the survey, it was also observed that the vending stalls lack basic infrastructures like toilets and potable water that is currently a major problem. This study indicates a need for improvements in the environmental conditions at these sites to prevent foodborne diseases. Moreover, based on the results observed food safety and food hygiene training or workshops for street vendors are highly recommended.

Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements

A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight.

Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)

Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.

Numerical Analysis of Flow in the Gap between a Simplified Tractor-Trailer Model and Cross Vortex Trap Device

Heavy trucks are aerodynamically inefficient due to their un-streamlined body shapes, leading to more than of 60% engine power being required to overcome the aerodynamics drag at 60 m/hr. There are many aerodynamics drag reduction devices developed and this paper presents a study on a drag reduction device called Cross Vortex Trap Device (CVTD) deployed in the gap between the tractor and the trailer of a simplified tractor-trailer model. Numerical simulations have been carried out at Reynolds number 0.51×106 based on inlet flow velocity and height of the trailer using the Reynolds-Averaged Navier-Stokes (RANS) approach. Three different configurations of CVTD have been studied, ranging from single to three slabs, equally spaced on the front face of the trailer. Flow field around three different configurations of trap device have been analysed and presented. The results show that a maximum of 12.25% drag reduction can be achieved when a triple vortex trap device is used. Detailed flow field analysis along with pressure contours are presented to elucidate the drag reduction mechanisms of CVTD and why the triple vortex trap configuration produces the maximum drag reduction among the three configurations tested.

Online Graduate Students’ Perspective on Engagement in Active Learning in the United States

As of 2017, many researchers in educational journals are still wondering if students are effectively and efficiently engaged in active learning in the online learning environment. The goal of this qualitative single case study and narrative research is to explore if students are actively engaged in their online learning. Seven online students in the United States from LinkedIn and residencies were interviewed for this study. Eleven online learning techniques from research were used as a framework.  Data collection tools were used for the study that included a digital audiotape, observation sheet, interview protocol, transcription, and NVivo 12 Plus qualitative software.  Data analysis process, member checking, and key themes were used to reach saturation. About 85.7% of students preferred individual grading. About 71.4% of students valued professor’s interacting 2-3 times weekly, participating through posts and responses, having good internet access, and using email.  Also, about 57.1% said students log in 2-3 times weekly to daily, professor’s social presence helps, regular punctuality in work submission, and prefer assessments style of research, essay, and case study.  About 42.9% appreciated syllabus usefulness and professor’s expertise.

Adsorption and Electrochemical Regeneration for Industrial Wastewater Treatment

Graphite intercalation compound (GIC) has been demonstrated to be a useful, low capacity and rapid adsorbent for the removal of organic micropollutants from water. The high electrical conductivity and low capacity of the material lends itself to electrochemical regeneration. Following electrochemical regeneration, equilibrium loading under similar conditions is reported to exceed that achieved by the fresh adsorbent. This behavior is reported in terms of the regeneration efficiency being greater than 100%. In this work, surface analysis techniques are employed to investigate the material in three states: ‘Fresh’, ‘Loaded’ and ‘Regenerated’. ‘Fresh’ GIC is shown to exhibit a hydrogen and oxygen rich surface layer approximately 150 nm thick. ‘Loaded’ GIC shows a similar but slightly thicker surface layer (approximately 370 nm thick) and significant enhancement in the hydrogen and oxygen abundance extending beyond 600 nm from the surface. 'Regenerated’ GIC shows an oxygen rich layer, slightly thicker than the fresh case at approximately 220 nm while showing a very much lower hydrogen enrichment at the surface. Results demonstrate that while the electrochemical regeneration effectively removes the phenol model pollutant, it also oxidizes the exposed carbon surface. These results may have a significant impact on the estimation of adsorbent life.

Doubly Fed Induction Generator Based Variable Speed Wind Conversion System Control Enhancement by Applying Fractional Order Controller

In an electric power grid connected wind generation system, dynamic control strategy is essential to use the wind energy efficiently as well as for an energy optimization. The present study has focused on decoupled power regulation of doubly fed induction generator, operating in wind turbine, in accordance with the vector control approach by applying fractional order proportional integral (FOPI) controller. The FOPI controller is designed based on a simple method; up such that the response of closed loop process is similar to the response of a specified fractional model whose transfer function is Bode’s ideal function. In this tuning operation, the parameters of the proposed fractional controller are established analytically using the impulse closed-loop response of the controlled process. To show the superior action of the developed FOPI controller in comparison with standard PI controller in different function conditions, the study is validated through simulation using the software MATLAB/Simulink.

Carbothermic Reduction of Phosphoric Acid Extracted from Dephosphorization Slags to Produce Yellow Phosphorus

Phosphorous is an important element for agriculture and industry and is a non-renewable resource. Especially, yellow phosphorus is an essential material in advanced industrial technology, but phosphorus resources were not produced in Japan at all, and all depend on imports. It has been suggested, however, that the remaining accessible reserves of phosphate ore will be depleted within 50 years. Therefore, alternative resources for phosphate ore must be found. In this research, we have developed a process that enables the production of high-purity yellow phosphorus from domestic unused phosphorus resources such as steelmaking slags. The process consists of two parts: (1) the production of crude phosphoric acid from wastes such as steelmaking slag; (2) producing high-purity yellow phosphorus by low-temperature carbothermic reduction of phosphoric acid (H3PO4). The details of the carbothermic reduction of phosphoric acid are presented in this paper. Yellow phosphorus is commercially produced by carbothermic reduction of phosphate ore in an electric arc furnace at more than 1673K. In the newly developed system, gaseous P4O10 evaporated from H3PO4 is successfully reduced to yellow phosphorus by using carbon packed bed at less than 1273K. To meet the depletion of phosphate ore, the proposed process in this study to produce yellow phosphorus by carbothermic reduction of H3PO4 that are extracted from dephosphorization slags will be one of the effective and economical solutions.