Online Signature Verification Using Angular Transformation for e-Commerce Services

The rapid growth of e-Commerce services is significantly observed in the past decade. However, the method to verify the authenticated users still widely depends on numeric approaches. A new search on other verification methods suitable for online e-Commerce is an interesting issue. In this paper, a new online signature-verification method using angular transformation is presented. Delay shifts existing in online signatures are estimated by the estimation method relying on angle representation. In the proposed signature-verification algorithm, all components of input signature are extracted by considering the discontinuous break points on the stream of angular values. Then the estimated delay shift is captured by comparing with the selected reference signature and the error matching can be computed as a main feature used for verifying process. The threshold offsets are calculated by two types of error characteristics of the signature verification problem, False Rejection Rate (FRR) and False Acceptance Rate (FAR). The level of these two error rates depends on the decision threshold chosen whose value is such as to realize the Equal Error Rate (EER; FAR = FRR). The experimental results show that through the simple programming, employed on Internet for demonstrating e-Commerce services, the proposed method can provide 95.39% correct verifications and 7% better than DP matching based signature-verification method. In addition, the signature verification with extracting components provides more reliable results than using a whole decision making.

Outer-Brace Stress Concentration Factors of Offshore Two-Planar Tubular DKT-Joints

In the present paper, a set of parametric FE stress analyses is carried out for two-planar welded tubular DKT-joints under two different axial load cases. Analysis results are used to present general remarks on the effect of geometrical parameters on the stress concentration factors (SCFs) at the inner saddle, outer saddle, toe, and heel positions on the main (outer) brace. Then a new set of SCF parametric equations is developed through nonlinear regression analysis for the fatigue design of two-planar DKT-joints. An assessment study of these equations is conducted against the experimental data; and the satisfaction of the criteria regarding the acceptance of parametric equations is checked. Significant effort has been devoted by researchers to the study of SCFs in various uniplanar tubular connections. Nevertheless, for multi-planar joints covering the majority of practical applications, very few investigations have been reported due to the complexity and high cost involved.

Representing Collective Unconsciousness Using Neural Networks

Instead of representing individual cognition only, population cognition is represented using artificial neural networks whilst maintaining individuality. This population network trains continuously, simulating adaptation. An implementation of two coexisting populations is compared to the Lotka-Volterra model of predator-prey interaction. Applications include multi-agent systems such as artificial life or computer games.

Digital Scholarship and Disciplinary Culture: An Investigation of Sultan Qaboos University, Oman

The emergence of networked information and communication has transformed the accessibility and delivery of scholarly information and fundamentally impacted on the processes of research and scholarly communication. The purpose of this study is to investigate disciplinary differences in the use of networked information for research and scholarly communication at Sultan Qaboos University, Oman. This study has produced quantitative data about how and why academics within different disciplines utilize networked information that is made available either internally through the university library, or externally through networked services accessed by the Internet. The results indicate some significant differences between the attitudes and practice of academics in the science disciplines when compared to those from the social sciences and humanities. While respondents from science disciplines show overall longer and more frequent use of networked information, respondents from humanities and social sciences indicated more positive attitudes and a greater degree of satisfaction toward library networked services.

EAAC: Energy-Aware Admission Control Scheme for Ad Hoc Networks

The decisions made by admission control algorithms are based on the availability of network resources viz. bandwidth, energy, memory buffers, etc., without degrading the Quality-of-Service (QoS) requirement of applications that are admitted. In this paper, we present an energy-aware admission control (EAAC) scheme which provides admission control for flows in an ad hoc network based on the knowledge of the present and future residual energy of the intermediate nodes along the routing path. The aim of EAAC is to quantify the energy that the new flow will consume so that it can be decided whether the future residual energy of the nodes along the routing path can satisfy the energy requirement. In other words, this energy-aware routing admits a new flow iff any node in the routing path does not run out of its energy during the transmission of packets. The future residual energy of a node is predicted using the Multi-layer Neural Network (MNN) model. Simulation results shows that the proposed scheme increases the network lifetime. Also the performance of the MNN model is presented.

A Novel Pilot Scheme for Frequency Offset and Channel Estimation in 2x2 MIMO-OFDM

The Carrier Frequency Offset (CFO) due to timevarying fading channel is the main cause of the loss of orthogonality among OFDM subcarriers which is linked to inter-carrier interference (ICI). Hence, it is necessary to precisely estimate and compensate the CFO. Especially for mobile broadband communications, CFO and channel gain also have to be estimated and tracked to maintain the system performance. Thus, synchronization pilots are embedded in every OFDM symbol to track the variations. In this paper, we present the pilot scheme for both channel and CFO estimation where channel estimation process can be carried out with only one OFDM symbol. Additional, the proposed pilot scheme also provides better performance in CFO estimation comparing with the conventional orthogonal pilot scheme due to the increasing of signal-tointerference ratio.

The Link between Distributed Leadership and Educational Outcomes: An Overview of Research

School leadership is commonly considered to have a significant influence on school effectiveness and improvement. Effective school leaders are expected to successfully introduce and support change and innovation at the school unit. Despite an abundance of studies on educational leadership, very few studies have provided evidence on the link between leadership models, and specific educational and school outcomes. This is true of a popular contemporary approach to leadership, namely, distributed leadership. The paper provides an overview of research findings on the effect of distributed leadership on educational outcomes. The theoretical basis for this approach to leadership is presented, with reference to methodological and research limitations. The paper discusses research findings and draws their implications for educational research on school leadership.

Pattern Recognition Techniques Applied to Biomedical Patterns

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Identifying the Kinematic Parameters of Hexapod Machine Tool

Hexapod Machine Tool (HMT) is a parallel robot mostly based on Stewart platform. Identification of kinematic parameters of HMT is an important step of calibration procedure. In this paper an algorithm is presented for identifying the kinematic parameters of HMT using inverse kinematics error model. Based on this algorithm, the calibration procedure is simulated. Measurement configurations with maximum observability are decided as the first step of this algorithm for a robust calibration. The errors occurring in various configurations are illustrated graphically. It has been shown that the boundaries of the workspace should be searched for the maximum observability of errors. The importance of using configurations with sufficient observability in calibrating hexapod machine tools is verified by trial calibration with two different groups of randomly selected configurations. One group is selected to have sufficient observability and the other is in disregard of the observability criterion. Simulation results confirm the validity of the proposed identification algorithm.

Inverse Sets-based Recognition of Video Clips

The paper discusses the mathematics of pattern indexing and its applications to recognition of visual patterns that are found in video clips. It is shown that (a) pattern indexes can be represented by collections of inverted patterns, (b) solutions to pattern classification problems can be found as intersections and histograms of inverted patterns and, thus, matching of original patterns avoided.

A Nobel Approach for Campus Monitoring

This paper presents one of the best applications of wireless sensor network for campus Monitoring. With the help of PIR sensor, temperature sensor and humidity sensor, effective utilization of energy resources has been implemented in one of rooms of Sharda University, Greater Noida, India. The RISC microcontroller is used here for analysis of output of sensors and providing proper control using ZigBee protocol. This wireless sensor module presents a tremendous power saving method for any campus

Cost-Optimized SSB Transmitter with High Frequency Stability and Selectivity

Single side band modulation is a widespread technique in communication with significant impact on communication technologies such as DSL modems and ATSC TV. Its widespread utilization is due to its bandwidth and power saving characteristics. In this paper, we present a new scheme for SSB signal generation which is cost efficient and enjoys superior characteristics in terms of frequency stability, selectivity, and robustness to noise. In the process, we develop novel Hilbert transform properties.

The Application of an Experimental Design for the Defect Reduction of Electrodeposition Painting on Stainless Steel Washers

The purpose of this research is to reduce the amount of incomplete coating of stainless steel washers in the electrodeposition painting process by using an experimental design technique. The surface preparation was found to be a major cause of painted surface quality. The influence of pretreating and painting process parameters, which are cleaning time, chemical concentration and shape of hanger were studied. A 23 factorial design with two replications was performed. The analysis of variance for the designed experiment showed the great influence of cleaning time and shape of hanger. From this study, optimized cleaning time was determined and a newly designed electrical conductive hanger was proved to be superior to the original one. The experimental verification results showed that the amount of incomplete coating defects decreased from 4% to 1.02% and operation cost decreased by 10.5%.

The New Method of Concealed Data Aggregation in Wireless Sensor: A Case Study

Wireless sensor networks (WSN) consists of many sensor nodes that are placed on unattended environments such as military sites in order to collect important information. Implementing a secure protocol that can prevent forwarding forged data and modifying content of aggregated data and has low delay and overhead of communication, computing and storage is very important. This paper presents a new protocol for concealed data aggregation (CDA). In this protocol, the network is divided to virtual cells, nodes within each cell produce a shared key to send and receive of concealed data with each other. Considering to data aggregation in each cell is locally and implementing a secure authentication mechanism, data aggregation delay is very low and producing false data in the network by malicious nodes is not possible. To evaluate the performance of our proposed protocol, we have presented computational models that show the performance and low overhead in our protocol.

Mixtures of Monotone Networks for Prediction

In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.

Worth A Thousand Words – How Drawings Provide Insight into Children-s Attitudes and Perceptions of Physical Education

The benefits of physical activity for children are promoted widely and well understood; however factors which impact on children-s beliefs and attitudes towards physical education need to be explored in more detail. The purpose of this study was to evaluate how primary school children value and perceive their involvement in physical education (PE) classes through the use of drawings. While this type of data collection has been used previously to determine a child-s response to specific health education classes, such as drug education, to the best of our knowledge it has not been used in the context of PE. Results from this study showed that kindergarten children found PE classes fun and engaging. Children in Year 4 and Year 6 were less satisfied with PE classes because of the activities offered, the lack of opportunity to play sport, and perception that teachers did not appear to value this area of the curriculum.

Nitrogen Removal in a High-efficiency Denitrification/Oxic Filter treatment System for Advanced Treatment of Municipal Wastewater

Biological treatment of secondary effluent wastewater by two combined denitrification/oxic filtration systems packed with Lock type(denitrification filter) and ceramic ball (oxic filter) has been studied for 5months. Two phases of operating conditions were carried out with an influent nitrate and ammonia concentrations varied from 5.8 to 11.7mg/L and 5.4 to 12.4mg/L,respectively. Denitrification/oxic filter treatment system were operated under an EBCT (Empty Bed Contact Time) of 4h at system recirculation ratio in the range from 0 to 300% (Linear Velocity increased 19.5m/d to 78m/d). The system efficiency of denitrification , nitrification over 95% respectively. Total nitrogen and COD removal range from 54.6%(recirculation 0%) to 92.3%(recirculation 300%) and 10% to 62.5%, respectively.

Application of Computational Intelligence for Sensor Fault Detection and Isolation

The new idea of this research is application of a new fault detection and isolation (FDI) technique for supervision of sensor networks in transportation system. In measurement systems, it is necessary to detect all types of faults and failures, based on predefined algorithm. Last improvements in artificial neural network studies (ANN) led to using them for some FDI purposes. In this paper, application of new probabilistic neural network features for data approximation and data classification are considered for plausibility check in temperature measurement. For this purpose, two-phase FDI mechanism was considered for residual generation and evaluation.

MITAutomatic ECG Beat Tachycardia Detection Using Artificial Neural Network

The application of Neural Network for disease diagnosis has made great progress and is widely used by physicians. An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study. In our work, tachycardia features obtained are used for the training and testing of a Neural Network. In this study we are using Fuzzy Probabilistic Neural Networks as an automatic technique for ECG signal analysis. As every real signal recorded by the equipment can have different artifacts, we needed to do some preprocessing steps before feeding it to our system. Wavelet transform is used for extracting the morphological parameters of the ECG signal. The outcome of the approach for the variety of arrhythmias shows the represented approach is superior than prior presented algorithms with an average accuracy of about %95 for more than 7 tachy arrhythmias.

Energy Recovery Soft Switching Improved Efficiency Half Bridge Inverter for Electronic Ballast Applications

An improved topology of a voltage-fed quasi-resonant soft switching LCrCdc series-parallel half bridge inverter with a constant-frequency for electronic ballast applications is proposed in this paper. This new topology introduces a low-cost solution to reduce switching losses and circuit rating to achieve high-efficiency ballast. Switching losses effect on ballast efficiency is discussed through experimental point of view. In this discussion, an improved topology in which accomplishes soft switching operation over a wide power regulation range is proposed. The proposed structure uses reverse recovery diode to provide better operation for the ballast system. A symmetrical pulse wide modulation (PWM) control scheme is implemented to regulate a wide range of out-put power. Simulation results are kindly verified with the experimental measurements obtained by ballast-lamp laboratory prototype. Different load conditions are provided in order to clarify the performance of the proposed converter.