Revised PLWAP Tree with Non-frequent Items for Mining Sequential Pattern

Sequential pattern mining is a challenging task in data mining area with large applications. One among those applications is mining patterns from weblog. Recent times, weblog is highly dynamic and some of them may become absolute over time. In addition, users may frequently change the threshold value during the data mining process until acquiring required output or mining interesting rules. Some of the recently proposed algorithms for mining weblog, build the tree with two scans and always consume large time and space. In this paper, we build Revised PLWAP with Non-frequent Items (RePLNI-tree) with single scan for all items. While mining sequential patterns, the links related to the nonfrequent items are not considered. Hence, it is not required to delete or maintain the information of nodes while revising the tree for mining updated transactions. The algorithm supports both incremental and interactive mining. It is not required to re-compute the patterns each time, while weblog is updated or minimum support changed. The performance of the proposed tree is better, even the size of incremental database is more than 50% of existing one. For evaluation purpose, we have used the benchmark weblog dataset and found that the performance of proposed tree is encouraging compared to some of the recently proposed approaches.

Analysis of Different Combining Schemes of Two Amplify-Forward Relay Branches with Individual Links Experiencing Nakagami Fading

Relay based communication has gained considerable importance in the recent years. In this paper we find the end-toend statistics of a two hop non-regenerative relay branch, each hop being Nakagami-m faded. Closed form expressions for the probability density functions of the signal envelope at the output of a selection combiner and a maximal ratio combiner at the destination node are also derived and analytical formulations are verified through computer simulation. These density functions are useful in evaluating the system performance in terms of bit error rate and outage probability.

Neuro-fuzzy Classification System for Wireless-Capsule Endoscopic Images

In this research study, an intelligent detection system to support medical diagnosis and detection of abnormal lesions by processing endoscopic images is presented. The images used in this study have been obtained using the M2A Swallowable Imaging Capsule - a patented, video color-imaging disposable capsule. Schemes have been developed to extract texture features from the fuzzy texture spectra in the chromatic and achromatic domains for a selected region of interest from each color component histogram of endoscopic images. The implementation of an advanced fuzzy inference neural network which combines fuzzy systems and artificial neural networks and the concept of fusion of multiple classifiers dedicated to specific feature parameters have been also adopted in this paper. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.

Business Intelligence and Strategic Decision Simulation

The purpose of this study is two-fold. First, it attempts to explore potential opportunities for utilizing visual interactive simulations along with Business Intelligence (BI) as a decision support tool for strategic decision making. Second, it tries to figure out the essential top-level managerial requirements that would transform strategic decision simulation into an integral component of BI systems. The domain of particular interest was the application of visual interactive simulation capabilities in the field of supply chains. A qualitative exploratory method was applied, through the use of interviews with two leading companies. The collected data was then analysed to demonstrate the difference between the literature perspective and the practical managerial perspective on the issue. The results of the study suggest that although the use of simulation particularly in managing supply chains is very evident in literature, yet, in practice such utilization is still in its infancy, particularly regarding strategic decisions. Based on the insights a prototype of a simulation based BI-solution-extension was developed and evaluated.

Optimal Embedded Generation Allocation in Distribution System Employing Real Coded Genetic Algorithm Method

This paper proposes a new methodology for the optimal allocation and sizing of Embedded Generation (EG) employing Real Coded Genetic Algorithm (RCGA) to minimize the total power losses and to improve voltage profiles in the radial distribution networks. RCGA is a method that uses continuous floating numbers as representation which is different from conventional binary numbers. The RCGA is used as solution tool, which can determine the optimal location and size of EG in radial system simultaneously. This method is developed in MATLAB. The effect of EG units- installation and their sizing to the distribution networks are demonstrated using 24 bus system.

Using a Trust-Based Environment Key for Mobile Agent Code Protection

Human activities are increasingly based on the use of remote resources and services, and on the interaction between remotely located parties that may know little about each other. Mobile agents must be prepared to execute on different hosts with various environmental security conditions. The aim of this paper is to propose a trust based mechanism to improve the security of mobile agents and allow their execution in various environments. Thus, an adaptive trust mechanism is proposed. It is based on the dynamic interaction between the agent and the environment. Information collected during the interaction enables generation of an environment key. This key informs on the host-s trust degree and permits the mobile agent to adapt its execution. Trust estimation is based on concrete parameters values. Thus, in case of distrust, the source of problem can be located and a mobile agent appropriate behavior can be selected.

Changes to Oxidative Stress Levels Following Exposure to Formaldehyde in Lymphocytes

Formaldehyde is the illegal chemical substance used for food preservation in fish and vegetable. It can promote carcinogenesis. Superoxide dismutases are the important antioxidative enzymes that catalyze the dismutation of superoxide anion into oxygen and hydrogen peroxide. The resultant level of oxidative stress in formaldehyde-treated lymphocytes was investigated. The formaldehyde concentrations of 0, 20, 40, 60, 80 and 120μmol/L were treated in human lymphocytes for 12 hours. After 12 treated hours, the superoxide dismutase activity change was measured in formaldehyde-treated lymphocytes. The results showed that the formaldehyde concentrations of 60, 80 and 120μmol/L significantly decreased superoxide dismutase activities in lymphocytes (P < 0.05). The change of superoxide dismutase activity in formaldehyde-treated lymphocytes may be the biomarker for detect cellular injury, such as damage to DNA, due to formaldehyde exposure.

Cryptanalysis of Two-Factor Authenticated Key Exchange Protocol in Public Wireless LANs

In Public Wireless LANs(PWLANs), user anonymity is an essential issue. Recently, Juang et al. proposed an anonymous authentication and key exchange protocol using smart cards in PWLANs. They claimed that their proposed scheme provided identity privacy, mutual authentication, and half-forward secrecy. In this paper, we point out that Juang et al.'s protocol is vulnerable to the stolen-verifier attack and does not satisfy user anonymity.

Climate Change and Environmental Education: The Application of Concept Map for Representing the Knowledge Complexity of Climate Change

It has formed an essential issue that Climate Change, composed of highly knowledge complexity, reveals its significant impact on human existence. Therefore, specific national policies, some of which present the educational aspects, have been published for overcoming the imperative problem. Accordingly, the study aims to analyze as well as integrate the relationship between Climate Change and environmental education and apply the perspective of concept map to represent the knowledge contents and structures of Climate Change; by doing so, knowledge contents of Climate Change could be represented in an even more comprehensive way and manipulated as the tool for environmental education. The method adapted for this study is knowledge conversion model compounded of the platform for experts and teachers, who were the participants for this study, to cooperate and combine each participant-s standpoints into a complete knowledge framework that is the foundation for structuring the concept map. The result of this research contains the important concepts, the precise propositions and the entire concept map for representing the robust concepts of Climate Change.

Pipelined Control-Path Effects on Area and Performance of a Wormhole-Switched Network-on-Chip

This paper presents design trade-off and performance impacts of the amount of pipeline phase of control path signals in a wormhole-switched network-on-chip (NoC). The numbers of the pipeline phase of the control path vary between two- and one-cycle pipeline phase. The control paths consist of the routing request paths for output selection and the arbitration paths for input selection. Data communications between on-chip routers are implemented synchronously and for quality of service, the inter-router data transports are controlled by using a link-level congestion control to avoid lose of data because of an overflow. The trade-off between the area (logic cell area) and the performance (bandwidth gain) of two proposed NoC router microarchitectures are presented in this paper. The performance evaluation is made by using a traffic scenario with different number of workloads under 2D mesh NoC topology using a static routing algorithm. By using a 130-nm CMOS standard-cell technology, our NoC routers can be clocked at 1 GHz, resulting in a high speed network link and high router bandwidth capacity of about 320 Gbit/s. Based on our experiments, the amount of control path pipeline stages gives more significant impact on the NoC performance than the impact on the logic area of the NoC router.

Improved Text-Independent Speaker Identification using Fused MFCC and IMFCC Feature Sets based on Gaussian Filter

A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for speech related applications. On a recent contribution by authors, it has been shown that the Inverted Mel- Frequency Cepstral Coefficients (IMFCC) is useful feature set for SI, which contains complementary information present in high frequency region. This paper introduces the Gaussian shaped filter (GF) while calculating MFCC and IMFCC in place of typical triangular shaped bins. The objective is to introduce a higher amount of correlation between subband outputs. The performances of both MFCC & IMFCC improve with GF over conventional triangular filter (TF) based implementation, individually as well as in combination. With GMM as speaker modeling paradigm, the performances of proposed GF based MFCC and IMFCC in individual and fused mode have been verified in two standard databases YOHO, (Microphone Speech) and POLYCOST (Telephone Speech) each of which has more than 130 speakers.

Digital Learning Environments for Joint Master in Science Programmes in Building and Construction in Europe: Experimenting with Tools and Technologies

Recent developments in information and communication technologies (ICT) have created excellent conditions for profoundly enhancing the traditional learning and teaching practices. New modes of teaching in higher education subjects can profoundly enhance ones ability to proactively constructing his or her personal learning universe. These developments have contributed to digital learning environments becoming widely available and accessible. In addition, there is a trend towards enlargement and specialization in higher education in Europe. With as a result that existing Master of Science (MSc) programmes are merged or new programmes have been established that are offered as joint MSc programmes to students. In these joint MSc programmes, the need for (common) digital learning environments capable of surmounting the barriers of time and location has become evident. This paper discusses the past and ongoing efforts to establish such common digital learning environments in two joint MSc programmes in Europe and discusses the way technology-based learning environments affect the traditional way of learning.

Increasing the Efficiency of Rake Receivers for Ultra-Wideband Applications

In diversity rich environments, such as in Ultra- Wideband (UWB) applications, the a priori determination of the number of strong diversity branches is difficult, because of the considerably large number of diversity paths, which are characterized by a variety of power delay profiles (PDPs). Several Rake implementations have been proposed in the past, in order to reduce the number of the estimated and combined paths. To this aim, we introduce two adaptive Rake receivers, which combine a subset of the resolvable paths considering simultaneously the quality of both the total combining output signal-to-noise ratio (SNR) and the individual SNR of each path. These schemes achieve better adaptation to channel conditions compared to other known receivers, without further increasing the complexity. Their performance is evaluated in different practical UWB channels, whose models are based on extensive propagation measurements. The proposed receivers compromise between the power consumption, complexity and performance gain for the additional paths, resulting in important savings in power and computational resources.

Visualized Characterization of Molecular Mobility for Water Species in Foods

Six parameters, the effective diffusivity (De), activation energy of De, pre-exponential factor of De, amount (ASOW) of self-organized water species, and amplitude (α) of the forced oscillation of the molecular mobility (1/tC) derived from the forced cyclic temperature change operation, were characterized by using six typical foods, squid, sardines, scallops, salmon, beef, and pork, as a function of the correlation time (tC) of the water molecule-s proton retained in the foods. Each of the six parameters was clearly divided into the water species A1 and A2 at a specified value of tC =10-8s (=CtC), indicating an anomalous change in the physicochemical nature of the water species at the CtC. The forced oscillation of 1/tC clearly demonstrated a characteristic mode depending on the food shown as a three dimensional map associated with 1/tC, the amount of self-organized water, and tC.

Optimization of Breast Tumor Cells Isolation Efficiency and Purity by Membrane Filtration

Size based filtration is one of the common methods employed to isolate circulating tumor cells (CTCs) from whole blood. It is well known that this method suffers from isolation efficiency to purity tradeoff. However, this tradeoff is poorly understood. In this paper, we present the design and manufacturing of a special rectangular slit filter. The filter was designed to retain maximal amounts of nucleated cells, while minimizing the pressure on cells, thereby preserving their morphology. The key parameter, namely, input pressure, was optimized to retain the maximal number of tumor cells, whilst maximizing the depletion of normal blood cells (red and white blood cells and platelets). Our results indicate that for a slit geometry of 5 × 40 μm on a 13 mm circular membrane with a fill factor of 21%, a pressure of 6.9 mBar yields the optimum for maximizing isolation of MCF-7 and depletion of normal blood cells.

Pesticides Use in Rural Settings in Romania

The environment pollution with pesticides and heavy metals is a recognized problem nowadays, with extension to the global scale the tendency of amplification. Even with all the progress in the environmental field, both in the emphasize of the effect of the pollutants upon health, the linked studies environment-health are insufficient, not only in Romania but all over the world also. We aim to describe the particular situation in Romania regarding the uncontrolled use of pesticides, to identify and evaluate the risk zones for health and the environment in Romania, with the final goal of designing adequate programs for reduction and control of the risk sources. An exploratory study was conducted to determine the magnitude of the pesticide use problem in a population living in Saliste, a rural setting in Transylvania, Romania. The significant stakeholders in Saliste region were interviewed and a sample from the population living in Saliste area was selected to fill in a designed questionnaire. All the selected participants declared that they used pesticides in their activities for more than one purpose. They declared they annually applied pesticides for a period of time between 11 and 30 years, from 5 to 9 days per year on average, mainly on crops situated at some distance from the houses but high risk behavior was identified as the volunteers declared the use of pesticides in the backyard gardens, near their homes, where children were playing. The pesticide applicators did not have the necessary knowledge about safety and exposure. The health data must be correlated with exposure biomarkers in attempt to identify the possible health effects of the pesticides exposure. Future plans include educational campaigns to raise the awareness of the population on the danger of uncontrolled use of pesticides.

Detection, Tracking and Classification of Vehicles and Aircraft based on Magnetic Sensing Technology

Existing ground movement surveillance technologies at airports are subjected to limitations due to shadowing effects or multiple reflections. Therefore, there is a strong demand for a new sensing technology, which will be cost effective and will provide detection of non-cooperative targets under any weather conditions. This paper aims to present a new intelligent system, developed within the framework of the EC-funded ISMAEL project, which is based on a new magnetic sensing technology and provides detection, tracking and automatic classification of targets moving on the airport surface. The system is currently being installed at two European airports. Initial experimental results under real airport traffic demonstrate the great potential of the proposed system.

Remote Operation of CNC Milling Through Virtual Simulation and Remote Desktop Interface

Increasing the demand for effectively use of the production facility requires the tools for sharing the manufacturing facility through remote operation of the machining process. This research introduces the methodology of machining technology for direct remote operation of networked milling machine. The integrated tools with virtual simulation, remote desktop protocol and Setup Free Attachment for remote operation of milling process are proposed. Accessing and monitoring of machining operation is performed by remote desktop interface and 3D virtual simulations. Capability of remote operation is supported by an auto setup attachment with a reconfigurable pin type setup free technology installed on the table of CNC milling machine to perform unattended machining process. The system is designed using a computer server and connected to a PC based controlled CNC machine for real time monitoring. A client will access the server through internet communication and virtually simulate the machine activity. The result has been presented that combination between real time virtual simulation and remote desktop tool is enabling to operate all machine tool functions and as well as workpiece setup..

An Efficient Graph Query Algorithm Based on Important Vertices and Decision Features

Graph has become increasingly important in modeling complicated structures and schemaless data such as proteins, chemical compounds, and XML documents. Given a graph query, it is desirable to retrieve graphs quickly from a large database via graph-based indices. Different from the existing methods, our approach, called VFM (Vertex to Frequent Feature Mapping), makes use of vertices and decision features as the basic indexing feature. VFM constructs two mappings between vertices and frequent features to answer graph queries. The VFM approach not only provides an elegant solution to the graph indexing problem, but also demonstrates how database indexing and query processing can benefit from data mining, especially frequent pattern mining. The results show that the proposed method not only avoids the enumeration method of getting subgraphs of query graph, but also effectively reduces the subgraph isomorphism tests between the query graph and graphs in candidate answer set in verification stage.

Real-time Tracking in Image Sequences based-on Parameters Updating with Temporal and Spatial Neighborhoods Mixture Gaussian Model

Gaussian mixture background model is widely used in moving target detection of the image sequences. However, traditional Gaussian mixture background model usually considers the time continuity of the pixels, and establishes background through statistical distribution of pixels without taking into account the pixels- spatial similarity, which will cause noise, imperfection and other problems. This paper proposes a new Gaussian mixture modeling approach, which combines the color and gradient of the spatial information, and integrates the spatial information of the pixel sequences to establish Gaussian mixture background. The experimental results show that the movement background can be extracted accurately and efficiently, and the algorithm is more robust, and can work in real time in tracking applications.