A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition

This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Electrochemical Response Transductions of Graphenated-Polyaniline Nanosensor for Environmental Anthracene

A graphenated–polyaniline (GR-PANI) nanocomposite sensor was constructed and used for the determination of anthracene. The direct electro-oxidation behavior of anthracene on the GR-PANI modified glassy carbon electrode (GCE) was used as the sensing principle. The results indicate thatthe response profile of the oxidation of anthracene on GR-PANI-modified GCE provides for the construction of sensor systems based onamperometric and potentiometric signal transductions. A dynamic linear range of 0.12- 100 µM anthracene and a detection limit of 0.044 µM anthracene were established for the sensor system.

Assessment of Knowledge, Attitudes and Practices of Street Vendors in Mangaung Metro South Africa

Microbial contamination of ready-to-eat foods and beverages sold by street vendors has become an important public health issue. In developing countries including South Africa, health risks related to such kinds of foods are thought to be common. Thus, this study assessed knowledge, attitude and practices of street food vendors. Street vendors in the city of Mangaung Metro were investigated in order to assess their knowledge, attitudes and handling practices. A semi-structured questionnaire and checklist were used in interviews to determine the status of the vending sites and associa. ted food-handling practices. Data was collected by means of a face-to-face interview. The majority of respondents were black females. Hundred percent (100%) of the participants did not have any food safety training. However, street vendors showed a positive attitude towards food safety. Despite the positive attitude, vendors showed some non-compliance when it comes to handling food. During the survey, it was also observed that the vending stalls lack basic infrastructures like toilets and potable water that is currently a major problem. This study indicates a need for improvements in the environmental conditions at these sites to prevent foodborne diseases. Moreover, based on the results observed food safety and food hygiene training or workshops for street vendors are highly recommended.

Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)

Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.

Numerical Analysis of Flow in the Gap between a Simplified Tractor-Trailer Model and Cross Vortex Trap Device

Heavy trucks are aerodynamically inefficient due to their un-streamlined body shapes, leading to more than of 60% engine power being required to overcome the aerodynamics drag at 60 m/hr. There are many aerodynamics drag reduction devices developed and this paper presents a study on a drag reduction device called Cross Vortex Trap Device (CVTD) deployed in the gap between the tractor and the trailer of a simplified tractor-trailer model. Numerical simulations have been carried out at Reynolds number 0.51×106 based on inlet flow velocity and height of the trailer using the Reynolds-Averaged Navier-Stokes (RANS) approach. Three different configurations of CVTD have been studied, ranging from single to three slabs, equally spaced on the front face of the trailer. Flow field around three different configurations of trap device have been analysed and presented. The results show that a maximum of 12.25% drag reduction can be achieved when a triple vortex trap device is used. Detailed flow field analysis along with pressure contours are presented to elucidate the drag reduction mechanisms of CVTD and why the triple vortex trap configuration produces the maximum drag reduction among the three configurations tested.

Adsorption and Electrochemical Regeneration for Industrial Wastewater Treatment

Graphite intercalation compound (GIC) has been demonstrated to be a useful, low capacity and rapid adsorbent for the removal of organic micropollutants from water. The high electrical conductivity and low capacity of the material lends itself to electrochemical regeneration. Following electrochemical regeneration, equilibrium loading under similar conditions is reported to exceed that achieved by the fresh adsorbent. This behavior is reported in terms of the regeneration efficiency being greater than 100%. In this work, surface analysis techniques are employed to investigate the material in three states: ‘Fresh’, ‘Loaded’ and ‘Regenerated’. ‘Fresh’ GIC is shown to exhibit a hydrogen and oxygen rich surface layer approximately 150 nm thick. ‘Loaded’ GIC shows a similar but slightly thicker surface layer (approximately 370 nm thick) and significant enhancement in the hydrogen and oxygen abundance extending beyond 600 nm from the surface. 'Regenerated’ GIC shows an oxygen rich layer, slightly thicker than the fresh case at approximately 220 nm while showing a very much lower hydrogen enrichment at the surface. Results demonstrate that while the electrochemical regeneration effectively removes the phenol model pollutant, it also oxidizes the exposed carbon surface. These results may have a significant impact on the estimation of adsorbent life.

Doubly Fed Induction Generator Based Variable Speed Wind Conversion System Control Enhancement by Applying Fractional Order Controller

In an electric power grid connected wind generation system, dynamic control strategy is essential to use the wind energy efficiently as well as for an energy optimization. The present study has focused on decoupled power regulation of doubly fed induction generator, operating in wind turbine, in accordance with the vector control approach by applying fractional order proportional integral (FOPI) controller. The FOPI controller is designed based on a simple method; up such that the response of closed loop process is similar to the response of a specified fractional model whose transfer function is Bode’s ideal function. In this tuning operation, the parameters of the proposed fractional controller are established analytically using the impulse closed-loop response of the controlled process. To show the superior action of the developed FOPI controller in comparison with standard PI controller in different function conditions, the study is validated through simulation using the software MATLAB/Simulink.

Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Carbothermic Reduction of Phosphoric Acid Extracted from Dephosphorization Slags to Produce Yellow Phosphorus

Phosphorous is an important element for agriculture and industry and is a non-renewable resource. Especially, yellow phosphorus is an essential material in advanced industrial technology, but phosphorus resources were not produced in Japan at all, and all depend on imports. It has been suggested, however, that the remaining accessible reserves of phosphate ore will be depleted within 50 years. Therefore, alternative resources for phosphate ore must be found. In this research, we have developed a process that enables the production of high-purity yellow phosphorus from domestic unused phosphorus resources such as steelmaking slags. The process consists of two parts: (1) the production of crude phosphoric acid from wastes such as steelmaking slag; (2) producing high-purity yellow phosphorus by low-temperature carbothermic reduction of phosphoric acid (H3PO4). The details of the carbothermic reduction of phosphoric acid are presented in this paper. Yellow phosphorus is commercially produced by carbothermic reduction of phosphate ore in an electric arc furnace at more than 1673K. In the newly developed system, gaseous P4O10 evaporated from H3PO4 is successfully reduced to yellow phosphorus by using carbon packed bed at less than 1273K. To meet the depletion of phosphate ore, the proposed process in this study to produce yellow phosphorus by carbothermic reduction of H3PO4 that are extracted from dephosphorization slags will be one of the effective and economical solutions.

Evaluation of the Hepatitis C Virus and Classical and Modern Immunoassays Used Nowadays to Diagnose It in Tirana

HCV is a hepatotropic RNA virus, transmitted primarily via the blood route, which causes progressive disease such as chronic hepatitis, liver cirrhosis, or hepatocellular carcinoma. HCV nowadays is a global healthcare problem. A variety of immunoassays including old and new technologies are being applied to detect HCV in our country. These methods include Immunochromatography assays (ICA), Fluorescence immunoassay (FIA), Enzyme linked fluorescent assay (ELFA), and Enzyme linked immunosorbent assay (ELISA) to detect HCV antibodies in blood serum, which lately is being slowly replaced by more sensitive methods such as rapid automated analyzer chemiluminescence immunoassay (CLIA). The aim of this study is to estimate HCV infection in carriers and chronic acute patients and to evaluate the use of new diagnostic methods. This study was realized from September 2016 to May 2018. During this study period, 2913 patients were analyzed for the presence of HCV by taking samples from their blood serum. The immunoassays performed were ICA, FIA, ELFA, ELISA, and CLIA assays. Concluding, 82% of patients taken in this study, resulted infected with HCV. Diagnostic methods in clinical laboratories are crucial in the early stages of infection, in the management of chronic hepatitis and in the treatment of patients during their disease.

Microbial Assessment of Dairy Byproducts in Albania as a Basis for Consumer Safety

Dairy by-products are a fairly good environment for microorganisms due to their composition for their growth. Microbial populations have a significant impact in the production of cheese, butter, yogurt, etc. in terms of their organoleptic quality and at the same time some also cause their breakdown. In this paper, the microbiological contamination of soft cheese, butter and yogurt produced in the country (domestic) and imported is assessed, as an indicator of hygiene with impact on public health. The study was extended during September 2018-June 2019 and was divided into three periods, September-December, January-March, and April-June. During this study, a total of 120 samples were analyzed, of which 60 samples of cheese and butter locally produced, and 60 samples of imported soft cheese and butter productions. The microbial indicators analyzed are Staphylococcus aureus and E. coli. Analyzes have been conducted at the Food Safety Laboratory (FSIV) in Tirana in accordance with EU Regulation 2073/2005. Sampling was performed according to the specific international standards for these products (ISO 6887 and ISO 8261). Sampling and transport of samples were done under sterile conditions. Also, coding of samples was done to preserve the anonymity of subjects. After the analysis, the country's soft cheese products compared to imports were more contaminated with S. aureus and E. coli. Meanwhile, the imported butter samples that were analyzed, resulted within norms compared to domestic ones. Based on the results, it was concluded that the microbial quality of samples of cheese, butter and yogurt analyzed remains a real problem for hygiene in Albania. The study will also serve business operators in Albania to improve their work to ensure good hygiene on the basis of the HACCP plan and to provide a guarantee of consumer health.

Micropropagation and in vitro Conservation via Slow Growth Techniques of Prunus webbii (Spach) Vierh: An Endangered Plant Species in Albania

Wild almond is a woody species, which is difficult to propagate either generatively by seed or by vegetative methods (grafting or cuttings) and also considered as Endangered (EN) in Albania based on IUCN criteria. As a wild relative of cultivated fruit trees, this species represents a source of genetic variability and can be very important in breeding programs and cultivation. For this reason, it would be of interest to use an effective method of in vitro mid-term conservation, which involves strategies to slow plant growth through physicochemical alterations of in vitro growth conditions. Multiplication of wild almond was carried out using zygotic embryos, as primary explants, with the purpose to develop a successful propagation protocol. Results showed that zygotic embryos can proliferate through direct or indirect organogenesis. During subculture, stage was obtained a great number of new plantlets identical to mother plants derived from the zygotic embryos. All in vitro plantlets obtained from subcultures underwent in vitro conservation by minimal growth in low temperature (4ºC) and darkness. The efficiency of this technique was evaluated for 3, 6, and 10 months of conservation period. Maintenance in these conditions reduced micro cuttings growth. Survival and regeneration rates for each period were evaluated and resulted that the maximal time of conservation without subculture on 4ºC was 10 months, but survival and regeneration rates were significantly reduced, specifically 15.6% and 7.6%. An optimal period of conservation in these conditions can be considered the 5-6 months storage, which can lead to 60-50% of survival and regeneration rates. This protocol may be beneficial for mass propagation, mid-term conservation, and for genetic manipulation of wild almond.

Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests

The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.

Numerical and Experimental Comparison of Surface Pressures around a Scaled Ship Wind-Assisted Propulsion System

Significant legislative changes are set to revolutionise the commercial shipping industry. Upcoming emissions restrictions will force operators to look at technologies that can improve the efficiency of their vessels -reducing fuel consumption and emissions. A device which may help in this challenge is the Ship Wind-Assisted Propulsion system (SWAP), an actively controlled aerofoil mounted vertically on the deck of a ship. The device functions in a similar manner to a sail on a yacht, whereby the aerodynamic forces generated by the sail reach an equilibrium with the hydrodynamic forces on the hull and a forward velocity results. Numerical and experimental testing of the SWAP device is presented in this study. Circulation control takes the form of a co-flow jet aerofoil, utilising both blowing from the leading edge and suction from the trailing edge. A jet at the leading edge uses the Coanda effect to energise the boundary layer in order to delay flow separation and create high lift with low drag. The SWAP concept has been originated by the research and development team at SMAR Azure Ltd. The device will be retrofitted to existing ships so that a component of the aerodynamic forces acts forward and partially reduces the reliance on existing propulsion systems. Wind tunnel tests have been carried out at the de Havilland wind tunnel at the University of Glasgow on a 1:20 scale model of this system. The tests aim to understand the airflow characteristics around the aerofoil and investigate the approximate lift and drag coefficients that an early iteration of the SWAP device may produce. The data exhibits clear trends of increasing lift as injection momentum increases, with critical flow attachment points being identified at specific combinations of jet momentum coefficient, Cµ, and angle of attack, AOA. Various combinations of flow conditions were tested, with the jet momentum coefficient ranging from 0 to 0.7 and the AOA ranging from 0° to 35°. The Reynolds number across the tested conditions ranged from 80,000 to 240,000. Comparisons between 2D computational fluid dynamics (CFD) simulations and the experimental data are presented for multiple Reynolds-Averaged Navier-Stokes (RANS) turbulence models in the form of normalised surface pressure comparisons. These show good agreement for most of the tested cases. However, certain simulation conditions exhibited a well-documented shortcoming of RANS-based turbulence models for circulation control flows and over-predicted surface pressures and lift coefficient for fully attached flow cases. Work must be continued in finding an all-encompassing modelling approach which predicts surface pressures well for all combinations of jet injection momentum and AOA.

Comparing the Durability of Saudi Silica Sands for Use in Foundry Processing

This paper was developed to investigate two types of sands from the Kingdom of Saudi Arabia (KSA) for potential use in the global metal casting industry. Four types of sands were selected for study, two of the sand systems investigated are natural sands from the KSA. The third sand sample is a heat processed synthetic sand and the last sample is commercially available US silica sand that is used as a control in the study. The purpose of this study is to define the durability of the four sand systems selected for foundry usage. Additionally, chemical analysis of the sand systems is presented before and after elevated temperature exposure. Results show that Saudi silica sands are durable and can be used in foundry processing.

Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space

Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Two Lessons Learnt in Defining Intersections and Interfaces in Numerical Modeling with Plaxis

This paper is going to discuss two issues encountered in using PLAXIS. Both issues were monitored during application of PLAXIS to estimate the excavation-induced displacement. Column Soil Mixing (CSM) was applied to stabilise the excavation. It was understood that the estimated excavation induced deformation at the top of the CSM blocks highly depends on the material type defining pavement material adjacent to the CSM blocks. Cohesive material for pavement will result in the unrealistic connection between pavement and CSM even by defining an interface element. To find the most realistic approach, the interface defined in three different manners (1) no interface elements were applied (2) a non-cohesive soil layer was defined between pavement and CSM block to represent the friction between these materials (3) built-in interface elements in PLAXIS was used to define the boundary between the pavement and the CSM block. The result showed that the option 2 would result in more realistic results. The second issue was in the modelling of the contact line between the CSM block and an inclined layer underneath. The analysis result showed that the excavation-induced deformation highly depends on how the PLAXIS user defines the contact area. It was understood that if the contact area had defined as a point in which CSM block had intersected the layer underneath the estimated lateral displacement of CSM block would be unrealistically lower than the model in which the contact area was defined as a line.

Impact of Social Media on the Functioning of the Indian Government: A Critical Analysis

Social media has loomed as the most effective tool in recent times to flag the causes, contents, opinions and direction of any social movement and has demonstrated that it will have a far-reaching effect on government as well. This study focuses on India which has emerged as the fastest growing community on social media. Social movement activists, in particular, have extensively utilized the power of digital social media to streamline the effectiveness of social protest on a particular issue through extensive successful mass mobilizations. This research analyses the role and impact of social media as a power to catalyze the social movements in India and further seeks to describe how certain social movements are resisted, subverted, co-opted and/or deployed by social media. The impact assessment study has been made with the help of cases, policies and some social movement which India has witnessed the assertion of numerous social issues perturbing the public which eventually paved the way for remarkable judicial decisions. The paper concludes with the observations that despite its pros and cons, the impacts of social media on the functioning of the Indian Government have demonstrated that it has already become an indispensable tool in the hands of social media-suave Indians who are committed to bring about a desired change.

Demographic and Socio-Economic Study of the Elderly Population in Kolkata, India

Kolkata, the City of Joy, is a greying metropolis not only in respect of its concrete jungle but also because of the largest population of 60-plus residents that it shelters among all other cities in India. Declining birth and death rates and a negative growth of population indicate that the city has reached the last stage of demographic transition. Thus, the obvious consequence has been the ageing of its population. With this background, the present paper attempts to study the demographic and socio-economic status of the elderly population in Kolkata. Analysis and findings have been based on secondary data obtained from Census of India of various years, Sample Registration System Reports and reports by HelpAge India. Findings show that the elderly population is increasing continuously. With respect to gender, the male elderly outnumbers the female elderly population. The percentage of households having one elderly member is more in the city due to the emergence of the nuclear families and erosion of joint family system. With respect to socio-economic status, those elderly who are the heads of the family are lower in percentages than those in the other age groups. Also, male elderly as head of the family are greater in percentage than female elderly. Elderly in the category of currently married records the highest percentage followed by widowed, never married and lastly, separated or divorced. Male elderly outnumber the female elderly as currently married, while female elderly outnumbers the male elderly in the category of widowed. In terms of living status, the percentage of elderly who are living alone is highest in Kolkata and the reason for staying alone as no support from children also happens to be highest in this city. The literacy rate and higher level of education is higher among the male than female elderly. Higher percentages of female elderly have been found to be with disability. Disability in movement and multiple disabilities have been found to be more common among the elderly population in Kolkata. Percentages of male literate pensioners are highest than other categories. Also, in terms of levels of education male elderly who are graduate and above other than technical degree are the highest receivers of pension. Also, in terms of working status, elderly as non-workers are higher in percentages with the population of elderly females outnumbering the males. The old age dependency ratio in the city is increasing continuously and the ratio is higher among females than male. Thus, it can be stated that Kolkata is witnessing continuous and rapid ageing of its population. Increasing dependency ratio is likely to create pressure on the working population, available civic, social and health amenities. This requires intervention in the form of planning, formulation and implementation of laws, policies, programs and measures to safeguard and improve the conditions of the elderly in Kolkata.

Corporate Social Responsibility Disclosure, Tax Aggressiveness and Sustainability Report Assurance: Evidence from Thailand

This study aims to examine the association between disclosure of social responsibility and tax aggressiveness in developing countries, namely Thailand. This is due to the increasing trend of disclosure of social responsibility in developing countries, even though this disclosure of information is still voluntary. On the other hand, developing countries have low taxation rate and investor protection infrastructures that allow the disclosure of social responsibility to be used opportunistically as a tool to fool the attainment of interests. This study also examines the role of assurance on the association between corporate social responsibility disclosure and tax aggressiveness. The assurance aims to provide confidence that the disclosure of social responsibility by the company is valid. This research builds an index to measure the disclosure of social responsibility based on the rules issued by the innovative Global Reporting. The results of the study are based on a sample of publicly traded companies in Thailand, which showed a positive association between disclosure of corporate social responsibility and tax aggressiveness, but it was further discovered that these results were mitigated by the existence of assurance against disclosure of corporate social responsibility. The results of this study indicate that the disclosure of corporate social responsibility can show that the company cares about the issue of social responsibility but does not automatically make the company as one that holds ethical values ​​in its business practices.