Modeling Peer-to-Peer Networks with Interest-Based Clusters

In the world of Peer-to-Peer (P2P) networking different protocols have been developed to make the resource sharing or information retrieval more efficient. The SemPeer protocol is a new layer on Gnutella that transforms the connections of the nodes based on semantic information to make information retrieval more efficient. However, this transformation causes high clustering in the network that decreases the number of nodes reached, therefore the probability of finding a document is also decreased. In this paper we describe a mathematical model for the Gnutella and SemPeer protocols that captures clustering-related issues, followed by a proposition to modify the SemPeer protocol to achieve moderate clustering. This modification is a sort of link management for the individual nodes that allows the SemPeer protocol to be more efficient, because the probability of a successful query in the P2P network is reasonably increased. For the validation of the models, we evaluated a series of simulations that supported our results.

Real-Time Testing of Steel Strip Welds based on Bayesian Decision Theory

One of the main trouble in a steel strip manufacturing line is the breakage of whatever weld carried out between steel coils, that are used to produce the continuous strip to be processed. A weld breakage results in a several hours stop of the manufacturing line. In this process the damages caused by the breakage must be repaired. After the reparation and in order to go on with the production it will be necessary a restarting process of the line. For minimizing this problem, a human operator must inspect visually and manually each weld in order to avoid its breakage during the manufacturing process. The work presented in this paper is based on the Bayesian decision theory and it presents an approach to detect, on real-time, steel strip defective welds. This approach is based on quantifying the tradeoffs between various classification decisions using probability and the costs that accompany such decisions.

Attacks and Counter Measures in BST Overlay Structure of Peer-To-Peer System

There are various overlay structures that provide efficient and scalable solutions for point and range query in a peer-topeer network. Overlay structure based on m-Binary Search Tree (BST) is one such popular technique. It deals with the division of the tree into different key intervals and then assigning the key intervals to a BST. The popularity of the BST makes this overlay structure vulnerable to different kinds of attacks. Here we present four such possible attacks namely index poisoning attack, eclipse attack, pollution attack and syn flooding attack. The functionality of BST is affected by these attacks. We also provide different security techniques that can be applied against these attacks.

An Approach for Blind Source Separation using the Sliding DFT and Time Domain Independent Component Analysis

''Cocktail party problem'' is well known as one of the human auditory abilities. We can recognize the specific sound that we want to listen by this ability even if a lot of undesirable sounds or noises are mixed. Blind source separation (BSS) based on independent component analysis (ICA) is one of the methods by which we can separate only a special signal from their mixed signals with simple hypothesis. In this paper, we propose an online approach for blind source separation using the sliding DFT and the time domain independent component analysis. The proposed method can reduce calculation complexity in comparison with conventional methods, and can be applied to parallel processing by using digital signal processors (DSPs) and so on. We evaluate this method and show its availability.

Lateral Pressure in Squat Silos under Eccentric Discharge

The influence of eccentric discharge of stored solids in squat silos has been highly valued by many researchers. However, calculation method of lateral pressure under eccentric flowing still needs to be deeply studied. In particular, the lateral pressure distribution on vertical wall could not be accurately recognized mainly because of its asymmetry. In order to build mechanical model of lateral pressure, flow channel and flow pattern of stored solids in squat silo are studied. In this passage, based on Janssen-s theory, the method for calculating lateral static pressure in squat silos after eccentric discharge is proposed. Calculative formulae are deduced for each of three possible cases. This method is also focusing on unsymmetrical distribution characteristic of silo wall normal pressure. Finite element model is used to analysis and compare the results of lateral pressure and the numerical results illustrate the practicability of the theoretical method.

Simulating the Dynamics of Distribution of Hazardous Substances Emitted by Motor Engines in a Residential Quarter

This article is dedicated to development of mathematical models for determining the dynamics of concentration of hazardous substances in urban turbulent atmosphere. Development of the mathematical models implied taking into account the time-space variability of the fields of meteorological items and such turbulent atmosphere data as vortex nature, nonlinear nature, dissipativity and diffusivity. Knowing the turbulent airflow velocity is not assumed when developing the model. However, a simplified model implies that the turbulent and molecular diffusion ratio is a piecewise constant function that changes depending on vertical distance from the earth surface. Thereby an important assumption of vertical stratification of urban air due to atmospheric accumulation of hazardous substances emitted by motor vehicles is introduced into the mathematical model. The suggested simplified non-linear mathematical model of determining the sought exhaust concentration at a priori unknown turbulent flow velocity through non-degenerate transformation is reduced to the model which is subsequently solved analytically.

Laser Excited Nuclear γ -Source of High Spectral Brightness

This paper considers various channels of gammaquantum generation via an ultra-short high-power laser pulse interaction with different targets.We analyse the possibilities to create a pulsed gamma-radiation source using laser triggering of some nuclear reactions and isomer targets. It is shown that sub-MeV monochromatic short pulse of gamma-radiation can be obtained with pulse energy of sub-mJ level from isomer target irradiated by intense laser pulse. For nuclear reaction channel in light- atom materials, it is shown that sub-PW laser pulse gives rise to formation about million gamma-photons of multi-MeV energy.

IPSO Based UPFC Robust Output Feedback Controllers for Damping of Low Frequency Oscillations

On the basis of the linearized Phillips-Herffron model of a single-machine power system, a novel method for designing unified power flow controller (UPFC) based output feedback controller is presented. The design problem of output feedback controller for UPFC is formulated as an optimization problem according to with the time domain-based objective function which is solved by iteration particle swarm optimization (IPSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results prove the effectiveness and robustness of the proposed method in terms of a high performance power system. The simulation study shows that the designed controller by Iteration PSO performs better than Classical PSO in finding the solution.

Online Brands: A Comparative Study of World Top Ranked Universities with Science and Technology Programs

University websites are considered as one of the brand primary touch points for multiple stakeholders, but most of them did not have great designs to create favorable impressions. Some of the elements that web designers should carefully consider are the appearance, the content, the functionality, usability and search engine optimization. However, priority should be placed on website simplicity and negative space. In terms of content, previous research suggests that universities should include reputation, learning environment, graduate career prospects, image destination, cultural integration, and virtual tour on their websites. The study examines how top 200 world ranking science and technology-based universities present their brands online and whether the websites capture the content dimensions. Content analysis of the websites revealed that the top ranking universities captured these dimensions at varying degree. Besides, the UK-based university had better priority on website simplicity and negative space compared to the Malaysian-based university.

Hardware Prototyping of an Efficient Encryption Engine

An approach to develop the FPGA of a flexible key RSA encryption engine that can be used as a standard device in the secured communication system is presented. The VHDL modeling of this RSA encryption engine has the unique characteristics of supporting multiple key sizes, thus can easily be fit into the systems that require different levels of security. A simple nested loop addition and subtraction have been used in order to implement the RSA operation. This has made the processing time faster and used comparatively smaller amount of space in the FPGA. The hardware design is targeted on Altera STRATIX II device and determined that the flexible key RSA encryption engine can be best suited in the device named EP2S30F484C3. The RSA encryption implementation has made use of 13,779 units of logic elements and achieved a clock frequency of 17.77MHz. It has been verified that this RSA encryption engine can perform 32-bit, 256-bit and 1024-bit encryption operation in less than 41.585us, 531.515us and 790.61us respectively.

Face Image Coding Using Face Prototyping

In this paper we present a novel approach for face image coding. The proposed method makes a use of the features of video encoders like motion prediction. At first encoder selects appropriate prototype from the database and warps it according to features of encoding face. Warped prototype is placed as first I frame. Encoding face is placed as second frame as P frame type. Information about features positions, color change, selected prototype and data flow of P frame will be sent to decoder. The condition is both encoder and decoder own the same database of prototypes. We have run experiment with H.264 video encoder and obtained results were compared to results achieved by JPEG and JPEG2000. Obtained results show that our approach is able to achieve 3 times lower bitrate and two times higher PSNR in comparison with JPEG. According to comparison with JPEG2000 the bitrate was very similar, but subjective quality achieved by proposed method is better.

Performance Evaluation of a Limited Round-Robin System

Performance of a limited Round-Robin (RR) rule is studied in order to clarify the characteristics of a realistic sharing model of a processor. Under the limited RR rule, the processor allocates to each request a fixed amount of time, called a quantum, in a fixed order. The sum of the requests being allocated these quanta is kept below a fixed value. Arriving requests that cannot be allocated quanta because of such a restriction are queued or rejected. Practical performance measures, such as the relationship between the mean sojourn time, the mean number of requests, or the loss probability and the quantum size are evaluated via simulation. In the evaluation, the requested service time of an arriving request is converted into a quantum number. One of these quanta is included in an RR cycle, which means a series of quanta allocated to each request in a fixed order. The service time of the arriving request can be evaluated using the number of RR cycles required to complete the service, the number of requests receiving service, and the quantum size. Then an increase or decrease in the number of quanta that are necessary before service is completed is reevaluated at the arrival or departure of other requests. Tracking these events and calculations enables us to analyze the performance of our limited RR rule. In particular, we obtain the most suitable quantum size, which minimizes the mean sojourn time, for the case in which the switching time for each quantum is considered.

Architecting a Knowledge Theatre

This paper describes the architectural design considerations for building a new class of application, a Personal Knowledge Integrator and a particular example a Knowledge Theatre. It then supports this description by describing a scenario of a child acquiring knowledge and how this process could be augmented by the proposed architecture and design of a Knowledge Theatre. David Merrill-s first “principles of instruction" are kept in focus to provide a background to view the learning potential.

Sensitivity of Small Disturbance Angle Stability to the System Parameters of Future Power Networks

The incorporation of renewable energy sources for the sustainable electricity production is undertaking a more prominent role in electric power systems. Thus, it will be an indispensable incident that the characteristics of future power networks, their prospective stability for instance, get influenced by the imposed features of sustainable energy sources. One of the distinctive attributes of the sustainable energy sources is exhibiting the stochastic behavior. This paper investigates the impacts of this stochastic behavior on the small disturbance rotor angle stability in the upcoming electric power networks. Considering the various types of renewable energy sources and the vast variety of system configurations, the sensitivity analysis can be an efficient breakthrough towards generalizing the effects of new energy sources on the concept of stability. In this paper, the definition of small disturbance angle stability for future power systems and the iterative-stochastic way of its analysis are presented. Also, the effects of system parameters on this type of stability are described by performing a sensitivity analysis for an electric power test system.

A Modification on Newton's Method for Solving Systems of Nonlinear Equations

In this paper, we are concerned with the further study for system of nonlinear equations. Since systems with inaccurate function values or problems with high computational cost arise frequently in science and engineering, recently such systems have attracted researcher-s interest. In this work we present a new method which is independent of function evolutions and has a quadratic convergence. This method can be viewed as a extension of some recent methods for solving mentioned systems of nonlinear equations. Numerical results of applying this method to some test problems show the efficiently and reliability of method.

Automated Stereophotogrammetry Data Cleansing

The stereophotogrammetry modality is gaining more widespread use in the clinical setting. Registration and visualization of this data, in conjunction with conventional 3D volumetric image modalities, provides virtual human data with textured soft tissue and internal anatomical and structural information. In this investigation computed tomography (CT) and stereophotogrammetry data is acquired from 4 anatomical phantoms and registered using the trimmed iterative closest point (TrICP) algorithm. This paper fully addresses the issue of imaging artifacts around the stereophotogrammetry surface edge using the registered CT data as a reference. Several iterative algorithms are implemented to automatically identify and remove stereophotogrammetry surface edge outliers, improving the overall visualization of the combined stereophotogrammetry and CT data. This paper shows that outliers at the surface edge of stereophotogrammetry data can be successfully removed automatically.

Application of a Modified BCR Approach to Investigate the Mobility and Availability of Trace Elements (As, Ba, Cd, Co, Cr, Cu, Mo,Ni, Pb, Zn, and Hg) from a Solid Residue Matrix Designed for Soil Amendment

Trace element speciation of an integrated soil amendment matrix was studied with a modified BCR sequential extraction procedure. The analysis included pseudo-total concentration determinations according to USEPA 3051A and relevant physicochemical properties by standardized methods. Based on the results, the soil amendment matrix possessed neutralization capacity comparable to commercial fertilizers. Additionally, the pseudo-total concentrations of all trace elements included in the Finnish regulation for agricultural fertilizers were lower than the respective statutory limit values. According to chemical speciation, the lability of trace elements increased in the following order: Hg < Cr < Co < Cu < As < Zn < Ni < Pb < Cd < V < Mo < Ba. The validity of the BCR approach as a tool for chemical speciation was confirmed by the additional acid digestion phase. Recovery of trace elements during the procedure assured the validity of the approach and indicated good quality of the analytical work.

Existence and Globally Exponential Stability of Equilibrium for BAM Neural Networks with Mixed Delays and Impulses

In this paper, a class of generalized bi-directional associative memory (BAM) neural networks with mixed delays is investigated. On the basis of Lyapunov stability theory and contraction mapping theorem, some new sufficient conditions are established for the existence and uniqueness and globally exponential stability of equilibrium, which generalize and improve the previously known results. One example is given to show the feasibility and effectiveness of our results.

Motion Planning and Control of Autonomous Robots in a Two-dimensional Plane

This paper proposes a solution to the motion planning and control problem of a point-mass robot which is required to move safely to a designated target in a priori known workspace cluttered with fixed elliptical obstacles of arbitrary position and sizes. A tailored and unique algorithm for target convergence and obstacle avoidance is proposed that will work for any number of fixed obstacles. The control laws proposed in this paper also ensures that the equilibrium point of the given system is asymptotically stable. Computer simulations with the proposed technique and applications to a planar (RP) manipulator will be presented.

Application-Specific Instruction Sets Processor with Implicit Registers to Improve Register Bandwidth

Application-Specific Instruction (ASI ) set Processors (ASIP) have become an important design choice for embedded systems due to runtime flexibility, which cannot be provided by custom ASIC solutions. One major bottleneck in maximizing ASIP performance is the limitation on the data bandwidth between the General Purpose Register File (GPRF) and ASIs. This paper presents the Implicit Registers (IRs) to provide the desirable data bandwidth. An ASI Input/Output model is proposed to formulate the overheads of the additional data transfer between the GPRF and IRs, therefore, an IRs allocation algorithm is used to achieve the better performance by minimizing the number of extra data transfer instructions. The experiment results show an up to 3.33x speedup compared to the results without using IRs.