Hybrid Modulation Technique for Fingerprinting

This paper addresses an efficient technique to embed and detect digital fingerprint code. Orthogonal modulation method is a straightforward and widely used approach for digital fingerprinting but shows several limitations in computational cost and signal efficiency. Coded modulation method can solve these limitations in theory. However it is difficult to perform well in practice if host signals are not available during tracing colluders, other kinds of attacks are applied, and the size of fingerprint code becomes large. In this paper, we propose a hybrid modulation method, in which the merits of or-thogonal modulation and coded modulation method are combined so that we can achieve low computational cost and high signal efficiency. To analyze the performance, we design a new fingerprint code based on GD-PBIBD theory and modulate this code into images by our method using spread-spectrum watermarking on frequency domain. The results show that the proposed method can efficiently handle large fingerprint code and trace colluders against averaging attacks.

ORank: An Ontology Based System for Ranking Documents

Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques for extracting phrases and stemming words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.

Dynamic Visualization on Student's Performance, Retention and Transfer of Procedural Learning

This study examined the effects of two dynamic visualizations on 60 Malaysian primary school student-s performance (time on task), retention and transference. The independent variables in this study were the two dynamic visualizations, the video and the animated instructions. The dependent variables were the gain score of performance, retention and transference. The results showed that the students in the animation group significantly outperformed the students in the video group in retention. There were no significant differences in terms of gain scores in the performance and transference among the animation and the video groups, although the scores were slightly higher in the animation group compared to the video group. The conclusion of this study is that the animation visualization is superior compared to the video in the retention for a procedural task.

An Embedded System for Artificial Intelligence Applications

Conventional approaches in the implementation of logic programming applications on embedded systems are solely of software nature. As a consequence, a compiler is needed that transforms the initial declarative logic program to its equivalent procedural one, to be programmed to the microprocessor. This approach increases the complexity of the final implementation and reduces the overall system's performance. On the contrary, presenting hardware implementations which are only capable of supporting logic programs prevents their use in applications where logic programs need to be intertwined with traditional procedural ones, for a specific application. We exploit HW/SW codesign methods to present a microprocessor, capable of supporting hybrid applications using both programming approaches. We take advantage of the close relationship between attribute grammar (AG) evaluation and knowledge engineering methods to present a programmable hardware parser that performs logic derivations and combine it with an extension of a conventional RISC microprocessor that performs the unification process to report the success or failure of those derivations. The extended RISC microprocessor is still capable of executing conventional procedural programs, thus hybrid applications can be implemented. The presented implementation is programmable, supports the execution of hybrid applications, increases the performance of logic derivations (experimental analysis yields an approximate 1000% increase in performance) and reduces the complexity of the final implemented code. The proposed hardware design is supported by a proposed extended C-language called C-AG.

Local Perspectives on Climate Change Mitigation and Sustainability of Clean Development Mechanism (CDM) Project: A Case Study in Thailand

Global climate change has become the preeminent threat to human security in the 21st century. From mitigation perspective, this study aims to evaluate the performance of biogas renewable project under clean development mechanism activities (namely Korat-Waste-to-Energy) in Thailand and to assess local perceptions towards the significance of climate change mitigation and sustainability of such project in their community. Questionnaire was developed based on the national sustainable development criteria and was distributed among systematically selected households within project boundaries (n=260). Majority of the respondents strongly agreed with the reduction of odor problems (81%) and air pollution (76%). However, they were unsure about greenhouse gas reduction from such project and ignorant about the key issues of climate change. A lesson learned suggested that there is a need to further investigate the possible socio-psychological barriers may significantly shape public perception and understandings of climate change in the local context.

A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem

Full adders are important components in applications such as digital signal processors (DSP) architectures and microprocessors. In addition to its main task, which is adding two numbers, it participates in many other useful operations such as subtraction, multiplication, division,, address calculation,..etc. In most of these systems the adder lies in the critical path that determines the overall speed of the system. So enhancing the performance of the 1-bit full adder cell (the building block of the adder) is a significant goal.Demands for the low power VLSI have been pushing the development of aggressive design methodologies to reduce the power consumption drastically. To meet the growing demand, we propose a new low power adder cell by sacrificing the MOS Transistor count that reduces the serious threshold loss problem, considerably increases the speed and decreases the power when compared to the static energy recovery full (SERF) adder. So a new improved 14T CMOS l-bit full adder cell is presented in this paper. Results show 50% improvement in threshold loss problem, 45% improvement in speed and considerable power consumption over the SERF adder and other different types of adders with comparable performance.

Developing Forecasting Tool for Humanitarian Relief Organizations in Emergency Logistics Planning

Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability distributions. The estimates of the parameters are used to calculate natural disaster forecasts. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.

Compact Er3+-Doped ZBLAN Green Upconversion Fibre Laser

In this paper, a fibre laser at 546 nm has been studied for a signal power of -30 dB. Er3+-doped ZBLAN fibre has been used by upconversion pumping of a 980 nm laser diode. Gain saturation effect has been investigated in detail. Laser performance has also been discussed. An efficiency of 35% has been calculated with a length of 5 mm fibre laser. Results show that Er3+-doped ZBLAN is a promising candidate for optical amplification at 546 nm.

Agents Network on a Grid: An Approach with the Set of Circulant Operators

In this work we present some matrix operators named circulant operators and their action on square matrices. This study on square matrices provides new insights into the structure of the space of square matrices. Moreover it can be useful in various fields as in agents networking on Grid or large-scale distributed self-organizing grid systems.

Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems

In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.

Effect of Bio-Nitrogen as a Partial Alternative to Mineral-Nitrogen Fertiliser on Growth, Nitrate and Nitrite Contents, and Yield Quality in Brassica oleracea L.

Effects of bio-nitrogen fertilizer (bio-N), as a partial alternative to mineral-nitrogen fertilizer (mineral-N), on growth, yield and yield quality of broccoli plants were investigated. Bio-N was applied at 1, 2 or 3 doses in combination with 65% of the recommended dose of mineral-N (bio-N1, bio-N2 or bio-N3 + ⅔mineral-N). However, 100% of the recommended dose of mineral- N was applied as a control. Significant positive influences of the bio- N3 + ⅔mineral-N treatment were observed on growth traits, leaf contents of nitrogen, phosphorus, potassium, nitrate and nitrite, and yield quality when compared to the other two combined treatments. In contrast, there were no significant differences in these parameters between the bio-N3 + ⅔mineral-N and the control treatments, except for leaf contents of nitrate and nitrite. They showed lower contents in the bio-N3 + ⅔mineral-N treatment than the control. Therefore, we recommend using bio-N as a partial alternative to mineral-N for healthy nutrition.

Effective Scheduling of Semiconductor Manufacturing using Simulation

The process of wafer fabrication is arguably the most technologically complex and capital intensive stage in semiconductor manufacturing. This large-scale discrete-event process is highly reentrant, and involves hundreds of machines, restrictions, and processing steps. Therefore, production control of wafer fabrication facilities (fab), specifically scheduling, is one of the most challenging problems that this industry faces. Dispatching rules have been extensively applied to the scheduling problems in semiconductor manufacturing. Moreover, lot release policies are commonly used in this manufacturing setting to further improve the performance of such systems and reduce its inherent variability. In this work, simulation is used in the scheduling of re-entrant flow shop manufacturing systems with an application in semiconductor wafer fabrication; where, a simulation model has been developed for the Intel Five-Machine Six Step Mini-Fab using the ExtendTM simulation environment. The Mini-Fab has been selected as it captures the challenges involved in scheduling the highly re-entrant semiconductor manufacturing lines. A number of scenarios have been developed and have been used to evaluate the effect of different dispatching rules and lot release policies on the selected performance measures. Results of simulation showed that the performance of the Mini-Fab can be drastically improved using a combination of dispatching rules and lot release policy.

Physical Modeling of Oil Well Fire Extinguishing Using a Turbojet on a Barge

There are reports of gas and oil wells fire due to different accidents. Many different methods are used for fire fighting in gas and oil industry. Traditional fire extinguishing techniques are mostly faced with many problems and are usually time consuming and needs lots of equipments. Besides, they cause damages to facilities, and create health and environmental problems. This article proposes innovative approach in fire extinguishing techniques in oil and gas industry, especially applicable for burning oil wells located offshore. Fire extinguishment employing a turbojet is a novel approach which can help to extinguishment the fire in short period of time. Divergent and convergent turbojets modeled in laboratory scale along with a high pressure flame were used. Different experiments were conducted to determine the relationship between output discharges of trumpet and oil wells. The results were corrected and the relationship between dimensionless parameters of flame and fire extinguishment distances and also the output discharge of turbojet and oil wells in specified distances are demonstrated by specific curves.

Discovery of Sequential Patterns Based On Constraint Patterns

This paper proposes a method that discovers sequential patterns corresponding to user-s interests from sequential data. This method expresses the interests as constraint patterns. The constraint patterns can define relationships among attributes of the items composing the data. The method recursively decomposes the constraint patterns into constraint subpatterns. The method evaluates the constraint subpatterns in order to efficiently discover sequential patterns satisfying the constraint patterns. Also, this paper applies the method to the sequential data composed of stock price indexes and verifies its effectiveness through comparing it with a method without using the constraint patterns.

Automatic Feature Recognition for GPR Image Processing

This paper presents an automatic feature recognition method based on center-surround difference detecting and fuzzy logic that can be applied in ground-penetrating radar (GPR) image processing. Adopted center-surround difference method, the salient local image regions are extracted from the GPR images as features of detected objects. And fuzzy logic strategy is used to match the detected features and features in template database. This way, the problem of objects detecting, which is the key problem in GPR image processing, can be converted into two steps, feature extracting and matching. The contributions of these skills make the system have the ability to deal with changes in scale, antenna and noises. The results of experiments also prove that the system has higher ratio of features sensing in using GPR to image the subsurface structures.

Tourist Awareness of Environmental and Recreational Behaviors at the Guandu Wetland, North Taiwan

The aim of this study is to discuss the relationship between tourist awareness of environmental issues and their own recreational behaviors in the Taipei Guandu Wetland. A total of 392 questionnaires were gathered for data analysis using descriptive statistics, t-testing, one-way analysis of variance (ANOVA) and least significant difference (LSD) post hoc comparisons. The results showed that most of the visitors there enjoying the beautiful scenery are 21 to 30 years old with a college education. The means and standard deviations indicate that tourists express a positive degree of cognition of environmental issues and recreational behaviors. They suggest that polluting the environment is harmful to the natural ecosystem and that the natural resources of ecotourism are fragile, as well as expressing a high degree of recognition of the need to protect wetlands. Most of respondents are cognizant of the regulations proposed by the Guandu Wetland administration which asks that users exercise self-control and follow recommended guidelines when traveling the wetland. There were significant differences in the degree of cognition related to the variables of age, number of visits and reasons for visiting. We found that most respondents with relatively high levels of education would like to learn more about the wetland and are supportive of its conservation.

Combined Beamforming and Channel Estimation in WCDMA Communication Systems

We address the problem of joint beamforming and multipath channel parameters estimation in Wideband Code Division Multiple Access (WCDMA) communication systems that employ Multiple-Access Interference (MAI) suppression techniques in the uplink (from mobile to base station). Most of the existing schemes rely on time multiplex a training sequence with the user data. In WCDMA, the channel parameters can also be estimated from a code multiplexed common pilot channel (CPICH) that could be corrupted by strong interference resulting in a bad estimate. In this paper, we present new methods to combine interference suppression together with channel estimation when using multiple receiving antennas by using adaptive signal processing techniques. Computer simulation is used to compare between the proposed methods and the existing conventional estimation techniques.

New Effective Strains of Bacteria Bacillus thuringiensis ssp. israelensis for Bloodsucking Mosquito Control

Five original strains of entomopathogenic bacteria with insecticidal activity against mosquito larvae of the genera Aedes, Culex and Anopheles have been isolated from natural conditions in Armenia and characterized. According to morphological, physiological and biochemical parameters, all isolates were identified as Bacillus thuringiensis spp. israelensis (Bti). High larvicidal activity has been showed by three strains Bti. These strains can be recommended for industrial production of bacterial preparations.

Reducing SAGE Data Using Genetic Algorithms

Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.

Optimum Design of Launching Nose during Incremental Launching Construction of Same-Span Continuous Bridge

The launching nose plays an important role in the incremental launching construction. The parameters of the launching nose essentially affect the internal forces of the girder during the construction. The appropriate parameters can decrease the internal forces in the girder and save the material and reduce the cost. The simplified structural model, which is made with displacement method according to the characteristic of incremental launching construction and the variation rule of the internal forces, calculates and analyzes the effect of the length, the rigidity and weight of launch nose on the internal forces of girder during the incremental launching construction. The method, which can calculate the launching nose parameters for the optimum incremental launching construction, is achieved. This method is simple, reliable and easy for practical use.