Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem

In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operators forms a competitive algorithm to the existing ones. Computational results show that the proposed algorithm is capable of obtaining high quality solutions for problems of standard randomly generated knapsack instances. Comparative study of CMGA with simple GA in terms of results for unbounded knapsack instances of size up to 200 show the superiority of CMGA. Thus CMGA is an efficient tool of solving UKP and this algorithm is competitive with other Genetic Algorithms also.

University of Jordan Case Tool (Uj-Case- Tool) for Database Reverse Engineering

The database reverse engineering problems and solving processes are getting mature, even though, the academic community is facing the complex problem of knowledge transfer, both in university and industrial contexts. This paper presents a new CASE tool developed at the University of Jordan which addresses an efficient support of this transfer, namely UJ-CASE-TOOL. It is a small and self-contained application exhibiting representative problems and appropriate solutions that can be understood in a limited time. It presents an algorithm that describes the developed academic CASE tool which has been used for several years both as an illustration of the principles of database reverse engineering and as an exercise aimed at academic and industrial students.

A Family of Zero Stable Block Integrator for the Solutions of Ordinary Differential Equations

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different four discrete schemes, each of order (5,5,5,5)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block methods are tested on linear and non-linear ordinary differential equations and the results obtained compared favorably with the exact solution.

Marangoni Instability in a Fluid Layer with Insoluble Surfactant

The Marangoni convective instability in a horizontal fluid layer with the insoluble surfactant and nondeformable free surface is investigated. The surface tension at the free surface is linearly dependent on the temperature and concentration gradients. At the bottom surface, the temperature conditions of uniform temperature and uniform heat flux are considered. By linear stability theory, the exact analytical solutions for the steady Marangoni convection are derived and the marginal curves are plotted. The effects of surfactant or elasticity number, Lewis number and Biot number on the marginal Marangoni instability are assessed. The surfactant concentration gradients and the heat transfer mechanism at the free surface have stabilizing effects while the Lewis number destabilizes fluid system. The fluid system with uniform temperature condition at the bottom boundary is more stable than the fluid layer that is subjected to uniform heat flux at the bottom boundary.

The Challenge of Large-Scale IT Projects

The trend in the world of Information Technology (IT) is getting increasingly large and difficult projects rather than smaller and easier. However, the data on large-scale IT project success rates provide cause for concern. This paper seeks to answer why large-scale IT projects are different from and more difficult than other typical engineering projects. Drawing on the industrial experience, a compilation of the conditions that influence failure is presented. With a view to improve success rates solutions are suggested.

Unsteady Water Boundary Layer Flow with Non-Uniform Mass Transfer

In the present analysis an unsteady laminar forced convection water boundary layer flow is considered. The fluid properties such as viscosity and Prandtl number are taken as variables such that those are inversely proportional to temperature. By using quasi-linearization technique the nonlinear coupled partial differential equations are linearized and the numerical solutions are obtained by using implicit finite difference scheme with the appropriate selection of step sizes. Non-similar solutions have been obtained from the starting point of the stream-wise coordinate to the point where skin friction value vanishes. The effect non-uniform mass transfer along the surface of the cylinder through slot is studied on the skin friction and heat transfer coefficients.

Determinants of Information Security Affecting Adoption of Web-based Integrated Information Systems

The purpose of this paper is to analyze determinants of information security affecting adoption of the Web-based integrated information systems (IIS). We introduced Web-based information systems which are designed to formulate strategic plans for Peruvian government. Theoretical model is proposed to test impact of organizational factors (deterrent efforts and severity; preventive efforts) and individual factors (information security threat; security awareness) on intentions to proactively use the Web-based IIS .Our empirical study results highlight that deterrent efforts and deterrent severity have no significant influence on the proactive use intentions of IIS, whereas, preventive efforts play an important role in proactive use intentions of IIS. Thus, we suggest that organizations need to do preventive efforts by introducing various information security solutions, and try to improve information security awareness while reducing the perceived information security threats.

Ideological Tendencies of the Teachers about the Causes of Vandalism in Schools and Solution Proposals

Aggression is a behavior that cannot be approved by the society. Vandalism which is aggression towards objects is an action that tends to damage public or personal property. The behaviors that are described as vandalism can often be observed in the schools as well. According to Zwier and Vaughan (1) previous research about the reasons of and precautionary measures for vandalism in schools can be grouped in three tendency categories: conservative, liberal and radical. In this context, the main aim of this study is to discover which ideological tendency of the reasons of school vandalism is adopted by the teachers and what are their physical, environmental, school system and societal solutions for vandalism. A total of 200 teachers participated in this study, and the mean age was 34.20 years (SD = 6.54). The sample was made up of 109 females and 91 males. For the analysis of the data, SPSS 15.00, frequency, percentage, and t-test were used. The research showed that the teachers have tendencies in the order of conservative, liberal and radical for the reasons of vandalism. The research also showed that the teachers do not have any tendency for eliminating vandalism physically and general solutions on the level of society; on the other hand they mostly adopt a conservative tendency in terms of precautions against vandalism in the school system. Second most, they adopt the liberal tendency in terms of precautions against vandalism in the school system. . It is observed that the findings of this study are comparable to the existing literature on the subject. Future studies should be conducted with multiple variants and bigger sampling.

A Finite Element Solution of the Mathematical Model for Smoke Dispersion from Two Sources

Smoke discharging is a main reason of air pollution problem from industrial plants. The obstacle of a building has an affect with the air pollutant discharge. In this research, a mathematical model of the smoke dispersion from two sources and one source with a structural obstacle is considered. The governing equation of the model is an isothermal mass transfer model in a viscous fluid. The finite element method is used to approximate the solutions of the model. The triangular linear elements have been used for discretising the domain, and time integration has been carried out by semi-implicit finite difference method. The simulations of smoke dispersion in cases of one chimney and two chimneys are presented. The maximum calculated smoke concentration of both cases are compared. It is then used to make the decision for smoke discharging and air pollutant control problems on industrial area.

Bandwidth, Area Efficient and Target Device Independent DDR SDRAM Controller

The application of the synchronous dynamic random access memory (SDRAM) has gone beyond the scope of personal computers for quite a long time. It comes into hand whenever a big amount of low price and still high speed memory is needed. Most of the newly developed stand alone embedded devices in the field of image, video and sound processing take more and more use of it. The big amount of low price memory has its trade off – the speed. In order to take use of the full potential of the memory, an efficient controller is needed. Efficient stands for maximum random accesses to the memory both for reading and writing and less area after implementation. This paper proposes a target device independent DDR SDRAM pipelined controller and provides performance comparison with available solutions.

Application of a New Hybrid Optimization Algorithm on Cluster Analysis

Clustering techniques have received attention in many areas including engineering, medicine, biology and data mining. The purpose of clustering is to group together data points, which are close to one another. The K-means algorithm is one of the most widely used techniques for clustering. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. This paper is presented an efficient hybrid evolutionary optimization algorithm based on combining Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), called PSO-ACO, for optimally clustering N object into K clusters. The new PSO-ACO algorithm is tested on several data sets, and its performance is compared with those of ACO, PSO and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handing data clustering.

Instability of Soliton Solutions to the Schamel-nonlinear Schrödinger Equation

A variational method is used to obtain the growth rate of a transverse long-wavelength perturbation applied to the soliton solution of a nonlinear Schr¨odinger equation with a three-half order potential. We demonstrate numerically that this unstable perturbed soliton will eventually transform into a cylindrical soliton.

A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers

IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers.

Agreement Options on Multi Criteria Group Decision and Negotiation

This paper presents a conceptual model of agreement options on negotiation support for civil engineering decision. The negotiation support facilitates the solving of group choice decision making problems in civil engineering decision to reduce the impact of mud volcano disaster in Sidoarjo, Indonesia. The approach based on application of analytical hierarchy process (AHP) method for multi criteria decision on three level of decision hierarchy. Decisions for reducing impact is very complicated since many parties involved in a critical time. Where a number of stakeholders are involved in choosing a single alternative from a set of solution alternatives, there are different concern caused by differing stakeholder preferences, experiences, and background. Therefore, a group choice decision support is required to enable each stakeholder to evaluate and rank the solution alternatives before engaging into negotiation with the other stakeholders. Such civil engineering solutions as alternatives are referred to as agreement options that are determined by identifying the possible stakeholder choice, followed by determining the optimal solution for each group of stakeholder. Determination of the optimal solution is based on a game theory model of n-person general sum game with complete information that involves forming coalitions among stakeholders.

A Study on the User Experience Design of Mobile Twitter Application

The number of people using SNS with their mobile devices is soaring. This research focuses on the Twitter service that has the most third-party applications and delved into the fact that there were not sufficient studies on the UX design aspects of Twitter applications. Among social network services which have emerged as a major social topic lately, this research try to analyze the UX design of the Twitter application which is also called micro-blogging service. Therefore this research sets its goal to draw components of the UX design aspect of the Tweeter application on which there are not enough analysis yet. Moreover, this research suggests improvement of mobile application which will assure better users- experience. In order to analyze the UX design aspect of the mobile twitter application, with relevant document and user research, evaluating factors of the UX Design which would affect users- experience were organized. The subjects for cases were selected among six paid and free social networking applications that had been consistently ranked from 1st to 100th in the Korean application store during May, 2012 after closely monitoring the rank. From May 15th to May 11th in 2012, in accordance with the evaluating standard, surveys were conducted in a form of interviews with 20 subjects who have used the Twitter application to find out problems and solutions for the UX design of the mobile Twitter application.

Bifurcations and Chaotic Solutions of Two-dimensional Zonal Jet Flow on a Rotating Sphere

We study bifurcation structure of the zonal jet flow the streamfunction of which is expressed by a single spherical harmonics on a rotating sphere. In the non-rotating case, we find that a steady traveling wave solution arises from the zonal jet flow through Hopf bifurcation. As the Reynolds number increases, several traveling solutions arise only through the pitchfork bifurcations and at high Reynolds number the bifurcating solutions become Hopf unstable. In the rotating case, on the other hand, under the stabilizing effect of rotation, as the absolute value of rotation rate increases, the number of the bifurcating solutions arising from the zonal jet flow decreases monotonically. We also carry out time integration to study unsteady solutions at high Reynolds number and find that in the non-rotating case the unsteady solutions are chaotic, while not in the rotating cases calculated. This result reflects the general tendency that the rotation stabilizes nonlinear solutions of Navier-Stokes equations.

The Rank-scaled Mutation Rate for Genetic Algorithms

A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.

Software Development for the Kinematic Analysis of a Lynx 6 Robot Arm

The kinematics of manipulators is a central problem in the automatic control of robot manipulators. Theoretical background for the analysis of the 5 Dof Lynx-6 educational Robot Arm kinematics is presented in this paper. The kinematics problem is defined as the transformation from the Cartesian space to the joint space and vice versa. The Denavit-Harbenterg (D-H) model of representation is used to model robot links and joints in this study. Both forward and inverse kinematics solutions for this educational manipulator are presented, An effective method is suggested to decrease multiple solutions in inverse kinematics. A visual software package, named MSG, is also developed for testing Motional Characteristics of the Lynx-6 Robot arm. The kinematics solutions of the software package were found to be identical with the robot arm-s physical motional behaviors.

FPGA-based Systems for Evolvable Hardware

Since 1992, year where Hugo de Garis has published the first paper on Evolvable Hardware (EHW), a period of intense creativity has followed. It has been actively researched, developed and applied to various problems. Different approaches have been proposed that created three main classifications: extrinsic, mixtrinsic and intrinsic EHW. Each of these solutions has a real interest. Nevertheless, although the extrinsic evolution generates some excellent results, the intrinsic systems are not so advanced. This paper suggests 3 possible solutions to implement the run-time configuration intrinsic EHW system: FPGA-based Run-Time Configuration system, JBits-based Run-Time Configuration system and Multi-board functional-level Run-Time Configuration system. The main characteristic of the proposed architectures is that they are implemented on Field Programmable Gate Array. A comparison of proposed solutions demonstrates that multi-board functional-level run-time configuration is superior in terms of scalability, flexibility and the implementation easiness.