Blood Elements Activation in Hemodialysis – Animal Model Studies

Haemodialysis (HD) is a procedure saving patient lives around the world, unfortunately it brings numerous complications. Oxidative stress is one of the major factors which lead to erythrocytes destruction during extracorporeal circulation. Repeated HD procedures destroy blood elements and the organism is not able to keep up with their production. 30 HD procedures on healthy sheep were performed to evaluate effects of such treatment. Oxidative stress study was performed together with an analysis of basic blood parameters and empirical assessment of dialyzer condition after the procedure. A reversible decline in absolute leukocyte count, during first 30 min of HD, was observed. Blood clots were formed in the area of the blood inlet and outlet of the dialyzer. Our results are consistent with outcomes presented throughout the literature specifically with respect to the effects observed in humans and will provide a basis to evaluate methods for blood protection during haemodialysis.

Design of Walking Beam Pendle Axle Suspension System

This paper deals with design of walking beam pendel axle suspension system. This axles and suspension systems are mainly required for transportation of heavy duty and Over Dimension Consignment (ODC) cargo, which is exceeding legal limit in terms of length, width and height. Presently, in Indian transportation industry, ODC movement growth rate has increased in transportation of bridge sections (pre-cast beams), transformers, heavy machineries, boilers, gas turbines, windmill blades etc. However, current Indian standard road transport vehicles are facing lot of service and maintenance issues due to non availability of suitable axle and suspension to carry the ODC cargoes. This in turn will lead to increased number of road accidents, bridge collapse and delayed deliveries, which finally result in higher operating cost. Understanding these requirements, this work was carried out. These axles and suspensions are designed for optimum self – weight with maximum payload carrying capacity with better road stability.

Phase Transition Characteristics of Flame-Synthesized Gamma-Al2O3 Nanoparticles with Heat Treatment

In this study, the phase transition characteristics of flame-synthesized γ-Al2O3 nanoparticles to α-Al2O3 have been investigated. The nanoparticles were synthesized by using a coflow hydrogen diffusion flame. The phase transition and particle characteristics of the Al2O3 nanoparticles were determined by examining the crystalline structure and the shape of the collected nanoparticles before and after the heat treatment. The morphology and crystal structure of the Al2O3 nanoparticles were determined from SEM images and XRD analyses, respectively. The measured specific surface area and averaged particle size were 63.44m2/g and 23.94nm, respectively. Based on the scanning electron microscope images and x-ray diffraction patterns, it is believed that the onset temperature of the phase transition to α-Al2O3 was existed near 1200oC. The averaged diameters of the sintered particles heat treated at 1,260oC were approximately 80nm.

Distributed Motion Control Real-Time Contouring Algorithm Implementation and Performance Test

This paper presents an implementation and performance test of a distributed motion control system based on a master-slave configuration used to move a plasma-cutting torch over a predefined trajectory. The master is a general-purpose computer running on an open source operating system platform and software developer. Software running in the master computer generates commands on real time and we measure performance based on a selected set of differences between expected and observed distances. We are testing the null hypothesis that the outcome trajectory is identical to the input against the alternative hypothesis that there is a shift to the right or left of the input one. We used the Wilcoxon signed ranks test method for the hypothesis test.

An Experimental Study on the Effects of Bioethanol-Unleaded Gasoline Blends on Engine Performance in a Spark Ignition Engine

In the present study, the effects of bioethanol-unleaded gasoline blends on engine performance were investigated in a spark ignition engine. Fuel containing 100% ethanol (E100), fuel blend containing 40% bioethanol by volume (E40) and 100% unleaded gasoline (E0) were tested and the test results were compared. As the result of the study, it was found that the use of unleaded gasoline and bioethanol-unleaded gasoline blends as fuel did not cause a significant change in engine performance. The results of the engine tests showed that the use of unleaded gasoline-bioethanol blends as fuel caused a decrease in engine torque and engine power depending on the increase in the ratio of bioethanol in the fuel blend. As the result of these decreases, increases of up to 30% were observed in the specific fuel consumption of the engine.

Hydrogen and Biofuel Production from 2-Propanol Over Ru/Al2O3 Catalyst in Supercritical Water

Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Ru/Al2O3 was the catalyst used in the gasification reactions. All of the experiments were performed under a constant pressure of 25 MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600oC) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.

Catalytic Gasification of Olive Mill Wastewater as a Biomass Source under Supercritical Conditions

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which have a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water conditions is investigated with the use of Ru/Al2O3 catalyst. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. The catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (30, 60, 90, 120 and 150s), under a constant pressure of 25MPa. Through these experiments, the effects of reaction temperature and time on the gasification yield, gaseous product composition and OMW treatment efficiency were investigated.

Production of Biodiesel from Roasted Chicken Fat and Methanol: Free Catalyst

Transesterification reactions free of catalyst between roasted chicken fat with methanol were carried out in a batch reactor in order to produce biodiesel to temperatures from 120°C to 140°C. Parameters related to the transesterification reactions, including temperature, time and the molar ratio of chicken fat to methanol also investigated. The maximum yield of the reaction was of 98% under conditions of 140°C, 4 h of reaction time and a molar ratio of chicken fat to methanol of 1:31. The biodiesel thus obtained exhibited a viscosity of 6.3 mm2/s and a density of 895.9 kg/m3. The results showed this process can be right choice to produce biodiesel since this process does not use any catalyst. Therefore, the steps of neutralization and washing are avoided, indispensables in the case of the alkaline catalysis.

A New Classification of Risk-Reduction Options to Improve the Risk-Reduction Readiness of the Railway Industry

The gap between the selection of risk-reduction options in the railway industry and the task of their effective implementation results in compromised safety and substantial losses. An effective risk management must necessarily integrate the evaluation phases with the implementation phase. This paper proposes an essential categorisation of risk reduction measures that best addresses a standard railway industry portfolio. By categorising the risk reduction options into design, operational, procedural and technical options, it is guaranteed that the efforts of the implementation facilitators (people, processes and supporting systems) are systematically harmonised. The classification is based on an integration of fundamental principles of risk reduction in the railway industry with the systems engineering approach. This paper argues that the use of a similar classification approach is an attribute of organisations possessing a superior level of risk-reduction readiness. The integration of the proposed rational classification structure provides a solid ground for effective risk reduction.

Bio-Ecological Monitoring of Potatoes Stem Nematodes (Ditylenchus destructor Thorne, 1945) in Four Major Potato-Planter Municipalities of Kvemo Kartli (Eastern Georgia) Accompanying Fauna Biodiversity

There has been studied the distribution character of potato stem nematode (Ditylenchus destructor Thorne, 1945) on the potato fields in four municipalities (Tsalka, Bolnisi, Marneuli, Gardabani) of Kvemo Kartli (Eastern Georgia). As a result of scientific research there is stated the extensiveness of pathogens invasion, accompanying composition of fauna species, environmental groups of populations and quantity. During the research process in the studied ecosystems there were registered 160 forms of free-living and Phyto-parasitic nematodes, from which 118 forms are determined as species and 42 as genus. It was found that in almost the entire studied ecosystem there is dominated pathogenic nematodes Ditylenchus destructor. The large number of exemplars (almost uncountable) was found in tubers material of Bolnisi and Gardabani. 

Analysis of Drying Kinetics of a Slurry Droplet in the Falling Rate Period of Spray Drying

The heat and mass transfer was investigated during the falling rate period of spray drying of a slurry droplet. The effect of the porosity of crust layer formed from primary particles during liquid evaporation was studied numerically using the developed mathematical model which takes into account the heat and mass transfer in the core and crust regions, the movement of the evaporation interface, and the external heat and mass transfer between the drying air and the droplet surface. It was confirmed that the heat transfer through the crust layer was more intense in the case of the dense droplet than the loose one due to the enhanced thermal conduction resulting in the higher average droplet temperature. The mass transfer was facilitated in the crust layer of loose droplet owing to the large pore space available for diffusion of water vapor from the evaporation interface to the outer droplet surface. The longer drying time is required for the droplet of high porosity to reach the final moisture content than that for the dense one due to the larger amount of water to be evaporated during the falling rate.

The Problems of Employment Form Selection of Capital Group Management Team Members in the Light of Chosen Company Management Theories

Managing a capital group is a complex and specific process. It creates special conditions for the introduction of team work organization of managers. The selection of a manager employment form is a problem which gets complicated in case of management teams. The considered possibilities are an employment-based and non-employment managerial contract, which can be based on a thorough action or on formulating definite expectations regarding the results of a manager’s work. The problem of selection between individual and collegiate settlement of managers’ work has been pointed out. The deliberations were based on the assumptions of chosen company management theories, including transactional cost, agency theory, nexus of contracts theory, stewardship theory and theories referring directly to management teams, i.e. Upper echelons theory. 

Dynamic Ultrasound Scatterer Simulation Model Using Field-II and FEM for Speckle Tracking

There is a growing interest in the use of ultrasonic speckle tracking for biomedical image formation of tissue deformation. Speckle tracking is angle independent and has an ability to differentiate soft tissue into benign and malignant regions. In this paper a simulation model for dynamic ultrasound scatterer is presented. The model composes Field-II ultrasonic scatterers and FEM (ANSYS-11) nodes as a regional tissue deformation. A performance evaluation is presented on axial displacement and strain fields estimation of a uniformly elastic model, using speckle tracking based 1D cross-correlation of optimally segmented pre and post-deformation frames. Optimum correlation window length is investigated in terms of highest signal-to-noise ratio (SNR) for a selected region of interest of a smoothed displacement field. Finally, gradient based strain field of both smoothed and non-smoothed displacement fields are compared. Simulation results from the model are shown to compare favorably with FEM results.

Guided Wave Sensitivity for De-Bond Defects in Aluminum Skin-Honeycomb Core

Sandwich plates are finding an increasing range of application in the aircraft industry. The inspection of honeycomb composite structure by conventional ultrasonic technique is complex and very time consuming. The present study demonstrates a technique using guided Lamb waves at low frequencies to predict de-bond defects in aluminum skin-honeycomb core sandwich structure used in aeronautics. The numerical method was investigated for drawing the dispersion and displacement curves of ultrasonic Lamb wave propagated in Aluminum plate. An experimental study was carried out to check the theoretical prediction. The detection of unsticking between the skin and the core was tested by the two first modes for a low frequency. It was found that A0 mode is more sensitive to delamination defect compared to S0 mode.

Identification of Slum Areas for Improvement Inputs in Lafia Town, Nasarawa State

One of the United Nations Millennium Development targets is to 'achieve significant improvement in lives of at least 100 million slum dwellers, by 2020'. To monitor progress on this target a first step is to develop an operational definition to identify slum settlements. The indicators selected are: access to water and sanitation, sufficient living area, a house with durable material on a non-hazardous location and with tenure security. This paper describes the techniques of identifying slums and applied the techniques in identifying slum in Lafia town. The methodology used was selection of one district in Lafia town for this study and the district was zoned into four units. The total of 10% sample size out of 2,482 households of 250 questionnaires was administered using systematic sampling method based on proportion of houses at each zones as 90, 70, 40 and 50 respectively. The result shows that the area is a second order degeneration that needs a major improvement. Recommendations were made in this regard for urgent intervention in improving or upgrading of housing and infrastructural facilities

Effect of Geographical Co-Ordinates on the Parameters in the Rain Rate Model for Radio Propagation Applications

Rain attenuation plays a lot of roles in the design of satellite and terrestrial microwave radio links, hence a good knowledge of its effect is of great interest to Engineers and scientists in that it is often required to give a high level of accuracy of the rainrate distribution that expresses rainrate from the lowest value to the highest. This study proposes a model to express rainrate parameters alpha (α) and beta (β) as a function of geographical location at 0.01% of the time. The tropical locations used in the development of the effect were Ilorin, Ile-Ife, Douala, Dar-es-Selam, Nairobi, Lusaka, and Brazilia. This expression clearly confirms the variability of rainfall from place to place. When consistency test was carried out using the expression to generate rainrate for each location examined, the result obtained was reliable for rain intensities between 5mm/h and 200mm/h. The variability of α and β with latitude also shows that different latitudes have different cumulative rain distribution. The model proposed in this study would be one of the useful tools to Radio Engineers since the precipitation effect in the design of satellite and terrestrial microwave radio links is among the factors to consider when designing communication systems.

The Relationship of Eigenvalues between Backward MPSD and Jacobi Iterative Matrices

In this paper, the backward MPSD (Modified Preconditioned Simultaneous Displacement) iterative matrix is firstly proposed. The relationship of eigenvalues between the backward MPSD iterative matrix and backward Jacobi iterative matrix for block p-cyclic case is obtained, which improves and refines the results in the corresponding references.

Hydrolysis of Eicchornia crassipes and Egeria densa for Ethanol Production by Yeasts Isolated from Colombian Lake Fúquene

The aquatic plants are a promising renewable energy resource. Lake Fúquene polluting macrophytes, water hyacinth (Eichhornia crassipes C. Mart.) and Brazilian elodea (Egeria densa Planch.), were saccharifiedby different treatments and fermented to ethanol by native yeasts. Among the tested chemical and biological methods for the saccharification, Pleurotus ostreatus at 10% (m/v) was chosen as the best pre-treatment in both macrophytes (P

Development of a Bacterial Resistant Concrete for Use in Low Cost Kitchen Floors

The degrading effect due to bacterial growth on the structural integrity of concrete floor surfaces is predictable; this consequently cause development of surface micro cracks in which organisms penetrate through resulting in surface spalling. Hence, the need to develop mix design meeting the requirement of floor surfaces exposed to aggressive agent to improve certain material properties with good workability, extended lifespan and low cost is essential. In this work, tests were performed to examine the microbial activity on kitchen floor surfaces and the effect of adding admixtures. The biochemical test shows the existence of microorganisms (E.coli, Streptococcus) on newly casted structure. Of up to 6% porosity was reduced and improvement on structural integrity was observed upon adding mineral admixtures from the concrete mortar. The SEM result after 84 days of curing specimens, shows that chemical admixtures have significant role to enable retard bacterial penetration and good quality structure is achieved.

Linguistic Phenomena in Men and Women - TOT, FOK, Verbal Fluency

The aim of this study is to describe the differences between women and men in the phenomena of feeling of knowing/know (FOK), tip of the tongue (TOT), and verbal fluency. Two studies are presented. The first included a group of 60 participants and focused on the analysis of FOK and TOT in men and women. The second study described the performance of 302 participants in verbal fluency tasks. Both studies showed that sex is not a significant predictor of linguistic abilities. Rather, the main factors influencing one’s linguistic ability were Vocabulary and education. This study enriches the knowledge on mechanisms of memory and verbal production.