Experimental Determination of Reactions of Wind-Resistant Support of Circular Stacks in Various Configurations

Higher capacities of power plants together with increased awareness on environmental considerations have led to taller height of stacks. It is seen that strong wind can result in falling of stacks. So, aerodynamic consideration of stacks is very important in order to save the falling of stacks. One stack is not enough in industries and power sectors and two or three stacks are required for proper operation of the unit. It is very important to arrange the stacks in proper way to resist their downfall. The present experimental study concentrates on the mutual effect of three nearby stacks on each other at three different arrangements, viz. linear, side-by-side and triangular. The experiments find out the directions of resultant forces acting on the stacks in different configurations so that proper arrangement of supports can be made with respect to the wind directionality obtained from local meteorological data. One can also easily ascertain which stack is more vulnerable to wind in comparison to the others for a particular configuration. Thus, this study is important in studying the effect of wind force on three stacks in different arrangements and is very helpful in placing the supports in proper places in order to avoid failing of stack-like structures due to wind.

U.S. Nuclear Regulatory CommissionTraining for Research and Training Reactor Inspectors

Currently, a large number of license activities (Early Site Permits, Combined Operating License, reactor certifications, etc.), are pending for review before the United States Nuclear Regulatory Commission (US NRC). Much of the senior staff at the NRC is now committed to these review and licensing actions. To address this additional workload, the NRC has recruited a large number of new Regulatory Staff for dealing with these and other regulatory actions such as the US Fleet of Research and Test Reactors (RTRs). These reactors pose unusual demands on Regulatory Staff since the US Fleet of RTRs, although few (32 Licensed RTRs as of 2010), they represent a broad range of reactor types, operations, and research and training aspects that nuclear reactor power plants (such as the 104 LWRs) do not pose. The NRC must inspect and regulate all these facilities. This paper addresses selected training topics and regulatory activities providedNRC Inspectors for RTRs.

Plant Varieties Selection System

In the end of the day, meteorological data and environmental data becomes widely used such as plant varieties selection system. Variety plant selection for planted area is of almost importance for all crops, including varieties of sugarcane. Since sugarcane have many varieties. Variety plant non selection for planting may not be adapted to the climate or soil conditions for planted area. Poor growth, bloom drop, poor fruit, and low price are to be from varieties which were not recommended for those planted area. This paper presents plant varieties selection system for planted areas in Thailand from meteorological data and environmental data by the use of decision tree techniques. With this software developed as an environmental data analysis tool, it can analyze resulting easier and faster. Our software is a front end of WEKA that provides fundamental data mining functions such as classify, clustering, and analysis functions. It also supports pre-processing, analysis, and decision tree output with exporting result. After that, our software can export and display data result to Google maps API in order to display result and plot plant icons effectively.

Effects of Dual Inoculation of Azotobacter and Mycorrhiza with Nitrogen and Phosphorus Fertilizer Rates on Grain Yield and Some of Characteristics of Spring Safflower

In order to evaluate the Effects of dual inoculation of Azotobacter and Mycorrhiza with Nitrogen and Phosphorus levels on yield and yield components of spring safflower, this study was carried out in field of Farahan university in Markazi province in 2007. A factorial in a randomized complete block design with three replications was used inoculation of Azotobacter (with inoculation and without inoculation) and Mycorrhiza (with inoculation and without inoculation ) with Nitrogen and Phosphorus levels [F0= N0+ P0 (kg.ha-1), F1= N50+ P25(kg.ha-1), F2= N100+ P50(kg.ha-1) and F3= N150+ P75 (kg.ha-1)] on spring safflower (cultivar IL-111). In this study characteristics such as: Harvest index, Hectolitre weight, Root dry weight, Seed yield, Mycorrhizal Colonization Root, Number of days to maturity were assessed. Results indicated that treatment (A0M1F3) with grain yield (1556 kg.ha-1) and treatment (A0M1F0) with grain yield (918 kg.ha-1) were significantly superior to the other treatments and according to calculated, inoculation seeds in plantig date with Azotobacter and Mycorrhiza to cause increase grain yield about 5/38 percentage. we can by inoculation safflower seeds with Azotobacter and Mycorrhiza too easily at the time sowing date. The purpose of this research, study and evaluation the role of biological fixation N and P, to provide for feeds plants.

New Feed-Forward/Feedback Generalized Minimum Variance Self-tuning Pole-placement Controller

A new Feed-Forward/Feedback Generalized Minimum Variance Pole-placement Controller to incorporate the robustness of classical pole-placement into the flexibility of generalized minimum variance self-tuning controller for Single-Input Single-Output (SISO) has been proposed in this paper. The design, which provides the user with an adaptive mechanism, which ensures that the closed loop poles are, located at their pre-specified positions. In addition, the controller design which has a feed-forward/feedback structure overcomes the certain limitations existing in similar poleplacement control designs whilst retaining the simplicity of adaptation mechanisms used in other designs. It tracks set-point changes with the desired speed of response, penalizes excessive control action, and can be applied to non-minimum phase systems. Besides, at steady state, the controller has the ability to regulate the constant load disturbance to zero. Example simulation results using both simulated and real plant models demonstrate the effectiveness of the proposed controller.

The Effects of Roots Action of Tropical Green Roofs–Replication of German FLL in Singapore

Green Roofs offers numerous advantages, including lowering ambient temperature, which is of increasing interest due to global warming concerns. However, there are technical problems pertaining to waterproofing to be resolved. Currently, the only recognized green roof waterproofing test is the German standard FLL. This paper examines the potential of replicating the test in tropical climate and reducing the test duration by using pre-grown plants. A three year old sample and a new setup were used for this experimental study. The new setup was prepared with close reference to the FLL standards and was compared against the three year old sample. Results showed that the waterproofing membrane was damaged by plant roots in both setups. Joints integrity was also challenged.

Improved Fuzzy Neural Modeling for Underwater Vehicles

The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.

Effect of Different Lactic Acid Bacteria on Phytic Acid Content and Quality of whole Wheat Toast Bread

Nowadays, consumption of whole flours and flours with high extraction rate is recommended, because of their high amount of fibers, vitamins and minerals. Despite nutritional benefits of whole flour, concentration of some undesirable components such as phytic acid is higher than white flour. In this study, effect of several lactic acid bacteria sourdough on Toast bread is investigated. Sourdough from lactic acid bacteria (Lb. plantarum, Lb. reuteri) with different dough yield (250 and 300) is made and incubated at 30°C for 20 hour, then added to dough in the ratio of 10, 20 and 30% replacement. Breads that supplemented with Lb. plantarum sourdough had lower phytic acid. Higher replacement of sourdough and higher DY cause higher decrease in phytic acid content. Sourdough from Lb. plantarum, DY = 300 and 30% replacement cause the highest decrease in phytic acid content (49.63 mg/100g). As indicated by panelists, Lb. reuteri sourdough can present the greatest effect on overall quality score of the breads. DY reduction cause a decrease in bread quality score. Sensory score of Toast bread is 81.71 in the samples that treated with Lb. reuteri sourdough with DY = 250 and 20% replacement.

Alignment of MG-63 Osteoblasts on Fibronectin-Coated Phosphorous Doping Lattices in Silicon

A major challenge in biomaterials research is the regulation of protein adsorption which is a key factor for controlling the subsequent cell adhesion at implant surfaces. The aim of the present study was to control the adsorption of fibronectin (FN) and the attachment of MG-63 osteoblasts with an electronic nanostructure. Shallow doping line lattices with a period of 260 nm were produced for this purpose by implantation of phosphorous in silicon wafers. Protein coverage was determined after incubating the substrate with FN by means of an immunostaining procedure and the measurement of the fluorescence intensity with a TECAN analyzer. We observed an increased amount of adsorbed FN on the nanostructure compared to control substrates. MG-63 osteoblasts were cultivated for 24h on FN-incubated substrates and their morphology was assessed by SEM. Preferred orientation and elongation of the cells in direction of the doping lattice lines was observed on FN-coated nanostructures.

Influence of Biofertilizers on Flower Yield and Essential Oil of Chamomile ( Matricaria chamomile L.)

The main objective of this study was to determine the effects of vermicompost and amino acids on the qualitative and quantitative yield of chamomile. The experiment was conducted during the growing season of 2010 at the Alborz Medical Research Center. The Treatment groups consisted of vermicompost (0, 5, 10, 15 and 20 tons/ha) and the sprays of amino acids (budding stag, flowering stage, and budding + flowering stage). The experimental design was a factorial experiment based on Randomized Complete Block Design (RCBD) with three replications. The present results have shown that the highest plant height, flower head diameter, fresh and dry flower yield and significant essential oil content were obtained by using 20- ton vermicompost per hectare. Effects of amino acids were similar to those seen in vermicompost treatment and all measured traits were seen to be significant after the spray of amino acids at the budding + flowering stage).

Springback Simulations of Monolithic and Layered Steels Used for Pressure Equipment

Carbon steel is used in boilers, pressure vessels, heat exchangers, piping, structural elements and other moderatetemperature service systems in which good strength and ductility are desired. ASME Boiler and Pressure Vessel Code, Section II Part A (2004) provides specifications of ferrous materials for construction of pressure equipment, covering wide range of mechanical properties including high strength materials for power plants application. However, increased level of springback is one of the major problems in fabricating components of high strength steel using bending. Presented work discuss the springback simulations for five different steels (i.e. SA-36, SA-299, SA-515 grade 70, SA-612 and SA-724 grade B) using finite element analysis of air V-bending. Analytical springback simulations of hypothetical layered materials are presented. Result shows that; (i) combination of the material property parameters controls the springback, (ii) layer of the high ductility steel on the high strength steel greatly suppresses the springback.

Design of Moving Sliding Surfaces in A Variable Structure Plant and Chattering Phenomena

This paper deals with the design of a moving sliding surface in a variable structure plant for a second order system. The chattering phenomena is also dealt with during the switching process for an unstable sliding surface condition. The simulation examples considered in this paper shows the effectiveness of the sliding mode control method used for the design of the moving sliding surfaces. A simulink model of the continuous system was also developed in MATLAB-SIMULINK for the design and hence demonstrated. The phase portraits and the state plots shows the demonstration of the powerful control technique which can be applied for second order systems.

Modeling and FOS Feedback Based Control of SISO Intelligent Structures with Embedded Shear Sensors and Actuators

Active vibration control is an important problem in structures. The objective of active vibration control is to reduce the vibrations of a system by automatic modification of the system-s structural response. In this paper, the modeling and design of a fast output sampling feedback controller for a smart flexible beam system embedded with shear sensors and actuators for SISO system using Timoshenko beam theory is proposed. FEM theory, Timoshenko beam theory and the state space techniques are used to model the aluminum cantilever beam. For the SISO case, the beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. Controllers are designed using FOS method and the performance of the designed FOS controller is evaluated for vibration control for 4 SISO models of the same plant. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Some of the limitations of the Euler-Bernoulli theory such as the neglection of shear and axial displacement are being considered here, thus giving rise to an accurate beam model. Embedded shear sensors and actuators have been considered in this paper instead of the surface mounted sensors and actuators for vibration suppression because of lot of advantages. In controlling the vibration modes, the first three dominant modes of vibration of the system are considered.

The Residual Effects of Different Doses of Atrazine+Alachlor and Foramsulfuron on the Growth and Physiology of Rapeseed (Brassica napus L.)

A pot experiment was carried out under controlled conditions to evaluate the residual effects of different doses of atrazine+alachlor and foramsulfuron used in corn fields on the growth and physiology of rapeseed (Brassica napus L.). A split-plot experiment in CRD with 4 replications was used. The main plots consisted of herbicide type (atrazine+alachlor mixture and foramsulfuron) and the sub-plots were different residual doses of the herbicides (0, 1%, 5%, 10%, 20%, 40%, 50% and 100%). 7 cm diameter pots were filled with a virgin soil and seeds of rapeseed cv. Hayola were planted in them. The pots were kept under controlled conditions for 8 weeks after germination. At harvest, the growth parameters and the chlorophyll contents of the leaves were determined. The results showed that the growth of rapeseed plants was completely prevented at the highest residual doses of the herbicides (50 and 100 %). The growth parameters of rapeseed plants were affected by all doses of both types of the herbicide as compared to the controls. The residual effects of atrazine+alachlor mixture in reducing the growth parameters of rapeseed were more pronounced as compared to the residual effects of foramsulfuron alone.

Technique for Processing and Preservation of Human Amniotic Membrane for Ocular Surface Reconstruction

Human amniotic membrane (HAM) is a useful biological material for the reconstruction of damaged ocular surface. The processing and preservation of HAM is critical to prevent the patients undergoing amniotic membrane transplant (AMT) from cross infections. For HAM preparation human placenta is obtained after an elective cesarean delivery. Before collection, the donor is screened for seronegativity of HCV, Hbs Ag, HIV and Syphilis. After collection, placenta is washed in balanced salt solution (BSS) in sterile environment. Amniotic membrane is then separated from the placenta as well as chorion while keeping the preparation in BSS. Scrapping of HAM is then carried out manually until all the debris is removed and clear transparent membrane is acquired. Nitrocellulose membrane filters are then placed on the stromal side of HAM, cut around the edges with little membrane folded towards other side making it easy to separate during surgery. HAM is finally stored in solution of glycerine and Dulbecco-s Modified Eagle Medium (DMEM) in 1:1 ratio containing antibiotics. The capped borosil vials containing HAM are kept at -80°C until use. This vial is thawed to room temperature and opened under sterile operation theatre conditions at the time of surgery.

Effects of Different Plant Densities on the Yield and Quality of Second Crop Sesame

Sesame is one of the oldest and most important oil crops as main crop and second crop agriculture. This study was carried out to determine the effects of different inter- and intra-row spacings on the yield and yield components on second crop sesame; was set up in Antalya West Mediterranean Agricultural Research Institue in 2009. Muganlı 57 sesame cultivar was used as plant material. The field experiment was set up in a split plot design and row spacings (30, 40, 50, 60 and 70 cm) were assigned to the main plots and and intra-row spacings (5, 10, 20 and 30 cm) were assigned to the subplots. Seed yield, oil ratio, oil yield, protein ratio and protein yield were investigated. In general, wided inter row spacings and intra-row spacings, resulted in decreased seed yield, oil yield and protein yield. The highest seed yield, oil yield and protein yield (respectively, 1115.0 kg ha-1, 551.3 kg ha-1, 224.7 kg ha-1) were obtained from 30x5 cm plant density while the lowest seed yield, oil yield and protein yield (respectively, 677.0 kg ha-1, 327.0 kg ha-1, 130.0 kg ha-1) were recorded from 70x30 cm plant density. As a result, in terms of oil yield for second crop sesame agriculture, 30 cm row spacing, and 5 cm intra row spacing are the most suitable plant densities.

Optimization of the Structures of the Electric Feeder Systems of the Oil Pumping Plants in Algeria

In Algeria, now, the oil pumping plants are fed with electric power by independent local sources. This type of feeding has many advantages (little climatic influence, independent operation). However it requires a qualified maintenance staff, a rather high frequency of maintenance and repair and additional fuel costs. Taking into account the increasing development of the national electric supply network (Sonelgaz), a real possibility of transfer of the local sources towards centralized sources appears.These latter cannot only be more economic but more reliable than the independent local sources as well. In order to carry out this transfer, it is necessary to work out an optimal strategy to rebuilding these networks taking in account the economic parameters and the indices of reliability.

Investigating the Treatability of a Compost Leachate in a Hybrid Anaerobic Reactor: An Experimental Study

Compost manufacturing plants are one of units where wastewater is produced in significantly large amounts. Wastewater produced in these plants contains high amounts of substrate (organic loads) and is classified as stringent waste which creates significant pollution when discharged into the environment without treatment. A compost production plant in the one of the Iran-s province treating 200 tons/day of waste is one of the most important environmental pollutant operations in this zone. The main objectives of this paper are to investigate the compost wastewater treatability in hybrid anaerobic reactors with an upflow-downflow arrangement, to determine the kinetic constants, and eventually to obtain an appropriate mathematical model. After starting the hybrid anaerobic reactor of the compost production plant, the average COD removal rate efficiency was 95%.

Nest Site Selection by Persian Ground Jay (Podoces pleskei) in Bafgh Protected Area, Iran

We studied the selection of nest sites by Persian ground Jay (Podoces pleskei), in a semi -desert central Iran. Habitat variables such as plant species number, height of plant species, vegetation percent and distance to water sources of nest sites were compared with randomly selected non- used sites. The results showed that the most important factors influencing nesting site selection were total vegetation percent and number of shrubs (Zgophyllum eurypterum and Atraphaxis spinosa). The mean vegetation percent of 20 area selected by Persian Ground Jay was (4.41+ 0.17), which was significantly larger than that of the non – selected area (2.08 + 0.06). The number of Zygophyllum eurypterum (1.13+ 0.01) and Atraphaxis spinosa (1.36+ 0.10) were also significantly higher compared with the control area (0.43+ 0.07) and (0.58+ 0.9) respectively.

Evaluation of Chlorophyll Content and Chlorophyll Fluorescence Parameters and Relationships between Chlorophyll a, b and Chlorophyll Content Index under Water Stress in Olea europaea cv. Dezful

This study was conducted to determine effect of water stress on chlorophyll content and chlorophyll fluorescence parameter in young `Dezful- olive trees. Three irrigation regimes (40% ETcrop, 65% ETcrop and 100% ETcrop) were used. After irrigation treatments were applied, some of biochemical parameters including chlorophyll a, b, total chlorophyll, chlorophyll fluorescence and also chlorophyll content index (C.C.I) were measured. Results of Analysis of variance showed that irrigation treatments had significant effect on chlorophylla, total chlorophyll (chl a+b), C.C.I and Fv/Fm ratio. The amount of decreased chlorophyll a and total chlorophyll in plants were received 40% ETcrop were 51.55% and 46.86%, respectively, compared with 100% ETcrop.