Line Heating Forming: Methodology and Application Using Kriging and Fifth Order Spline Formulations

In this article, a method is presented to effectively estimate the deformed shape of a thick plate due to line heating. The method uses a fifth order spline interpolation, with up to C3 continuity at specific points to compute the shape of the deformed geometry. First and second order derivatives over a surface are the resulting parameters of a given heating line on a plate. These parameters are determined through experiments and/or finite element simulations. Very accurate kriging models are fitted to real or virtual surfaces to build-up a database of maps. Maps of first and second order derivatives are then applied on numerical plate models to evaluate their evolving shapes through a sequence of heating lines. Adding an optimization process to this approach would allow determining the trajectories of heating lines needed to shape complex geometries, such as Francis turbine blades.

An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models

In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.

The Effect of Stone Column (Nailing and Geogrid) on Stability of Expansive Clay

By enhancing the applicatıon of grounds for establishment and due to the lack of appropriate sites, engineers attempt to seek out a new method to reduce the weakness of soils. İn aspect of economic situation, various ways have been used to decrease the weak grounds. Because of the rapid development of infrastructural facilities, spreading the construction operation is an obligation. Furthermore, in various sites with the really bad soil situation, engineers have considered obvious problems. One of the most essential ways for developing the weak soils is stone column. Obviously, the method was introduced in France in 1830 to improve a native soil initially. Stone columns have an expanding range of usage in different rough foundation sites all over the world to increase the bearing capacity, to reduce the whole and differential settlements, to enhance the rate of consolidation, to stabilize slopes stability of embankments and to increase the liquefaction resistance as well. A recent procedure called installing vertical nails along the round stone columns in order to make better the performance of considered columns is offered. Moreover, thanks to the enhancing the nail diameter, number and embedment nail depth, the positive points of vertical circumferential nails increases. Based on the result of this study, load caring capacity will be develop with enhancing the length and the power of reinforcements in vertical encasement stone column (CESC). In this study, the main purpose is comparing two methods of stone columns (installed a nail surrounding the stone columns and using geogrid on clay) for enhancing the bearing capacity, decreasing the whole and various settlements.

Bed Evolution under One-Episode Flushing in a Truck Sewer in Paris, France

Sewer deposits have been identified as a major cause of dysfunctions in combined sewer systems regarding sewer management, which induces different negative consequents resulting in poor hydraulic conveyance, environmental damages as well as worker’s health. In order to overcome the problematics of sedimentation, flushing has been considered as the most operative and cost-effective way to minimize the sediments impacts and prevent such challenges. Flushing, by prompting turbulent wave effects, can modify the bed form depending on the hydraulic properties and geometrical characteristics of the conduit. So far, the dynamics of the bed-load during high-flow events in combined sewer systems as a complex environment is not well understood, mostly due to lack of measuring devices capable to work in the “hostile” in combined sewer system correctly. In this regards, a one-episode flushing issue from an opening gate valve with weir function was carried out in a trunk sewer in Paris to understand its cleansing efficiency on the sediments (thickness: 0-30 cm). During more than 1h of flushing within 5 m distance in downstream of this flushing device, a maximum flowrate and a maximum level of water have been recorded at 5 m in downstream of the gate as 4.1 m3/s and 2.1 m respectively. This paper is aimed to evaluate the efficiency of this type of gate for around 1.1 km (from the point -50 m to +1050 m in downstream from the gate) by (i) determining bed grain-size distribution and sediments evolution through the sewer channel, as well as their organic matter content, and (ii) identifying sections that exhibit more changes in their texture after the flush. For the first one, two series of sampling were taken from the sewer length and then analyzed in laboratory, one before flushing and second after, at same points among the sewer channel. Hence, a non-intrusive sampling instrument has undertaken to extract the sediments smaller than the fine gravels. The comparison between sediments texture after the flush operation and the initial state, revealed the most modified zones by the flush effect, regarding the sewer invert slope and hydraulic parameters in the zone up to 400 m from the gate. At this distance, despite the increase of sediment grain-size rages, D50 (median grainsize) varies between 0.6 mm and 1.1 mm compared to 0.8 mm and 10 mm before and after flushing, respectively. Overall, regarding the sewer channel invert slope, results indicate that grains smaller than sands (< 2 mm) are more transported to downstream along about 400 m from the gate: in average 69% before against 38% after the flush with more dispersion of grain-sizes distributions. Furthermore, high effect of the channel bed irregularities on the bed material evolution has been observed after the flush.

Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers

This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with the serpentine channel of the same overall channel length. From the results, we can find the following trends. When convection dominates fluid mixing, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller centerline radius is better than that of a micromixer consisting of major segment repeating units with a larger centerline radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed.

Grassland Phenology in Different Eco-Geographic Regions over the Tibetan Plateau

Studying on the response of vegetation phenology to climate change at different temporal and spatial scales is important for understanding and predicting future terrestrial ecosystem dynamics and the adaptation of ecosystems to global change. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset and climate data were used to analyze the dynamics of grassland phenology as well as their correlation with climatic factors in different eco-geographic regions and elevation units across the Tibetan Plateau. The results showed that during 2003–2012, the start of the grassland greening season (SOS) appeared later while the end of the growing season (EOS) appeared earlier following the plateau’s precipitation and heat gradients from southeast to northwest. The multi-year mean value of SOS showed differences between various eco-geographic regions and was significantly impacted by average elevation and regional average precipitation during spring. Regional mean differences for EOS were mainly regulated by mean temperature during autumn. Changes in trends of SOS in the central and eastern eco-geographic regions were coupled to the mean temperature during spring, advancing by about 7d/°C. However, in the two southwestern eco-geographic regions, SOS was delayed significantly due to the impact of spring precipitation. The results also showed that the SOS occurred later with increasing elevation, as expected, with a delay rate of 0.66 d/100m. For 2003–2012, SOS showed an advancing trend in low-elevation areas, but a delayed trend in high-elevation areas, while EOS was delayed in low-elevation areas, but advanced in high-elevation areas. Grassland SOS and EOS changes may be influenced by a variety of other environmental factors in each eco-geographic region.

Banking Union: A New Step towards Completing the Economic and Monetary Union

This study analyzes the critical gaps in the architecture of European stability and the expected role of the banking union as the new important step towards completing the Economic and Monetary Union that should enable the creation of safe and sound financial sector for the euro area market. The single rulebook together with the Single Supervisory Mechanism and the Single Resolution Mechanism - as two main pillars of the banking union, should provide a consistent application of common rules and administrative standards for supervision, recovery and resolution of banks – with the final aim of replacing the former bail-out practice with the bail-in system through which possible future bank failures would be resolved by their own funds, i.e. with minimal costs for taxpayers and real economy. In this way, the vicious circle between banks and sovereigns would be broken. It would also reduce the financial fragmentation recorded in the years of crisis as the result of divergent behaviors in risk premium, lending activities and interest rates between the core and the periphery. In addition, it should strengthen the effectiveness of monetary transmission channels, in particular the credit channels and overflows of liquidity on the money market which, due to the fragmentation of the common financial market, has been significantly disabled in period of crisis. However, contrary to all the positive expectations related to the future functioning of the banking union, major findings of this study indicate that characteristics of the economic system in which the banking union will operate should not be ignored. The euro area is an integration of strong and weak entities with large differences in economic development, wealth, assets of banking systems, growth rates and accountability of fiscal policy. The analysis indicates that low and unbalanced economic growth remains a challenge for the maintenance of financial stability and this problem cannot be resolved just by a single supervision. In many countries bank assets exceed their GDP by several times and large banks are still a matter of concern, because of their systemic importance for individual countries and the euro zone as a whole. The creation of the Single Supervisory Mechanism and the Single Resolution Mechanism is a response to the European crisis, which has particularly affected peripheral countries and caused the associated loop between the banking crisis and the sovereign debt crisis, but has also influenced banks’ balance sheets in the core countries, as the result of crossborder capital flows. The creation of the SSM and the SRM should prevent the similar episodes to happen again and should also provide a new opportunity for strengthening of economic and financial systems of the peripheral countries. On the other hand, there is a potential threat that future focus of the ECB, resolution mechanism and other relevant institutions will be extremely oriented towards large and significant banks (whereby one half of them operate in the core and most important euro area countries), and therefore it remains questionable to what extent will the common resolution funds will be used for rescue of less important institutions. Recent geopolitical developments will be the optimal indicator to show whether the previously established mechanisms are sufficient enough to maintain the adequate financial stability in the euro area market.

Appraisal on Link Lifetime Prediction Using Geographical Information

Geographical routing protocol requires node physical location information to make forwarding decision. Geographical routing uses location service or position service to obtain the position of a node. The geographical information is a geographic coordinates or can be obtained through reference points on some fixed coordinate system. Link can be formed between two nodes. Link lifetime plays a crucial role in MANET. Link lifetime represent how long the link is stable without any failure between the nodes. Link failure may occur due to mobility and because of link failure energy of nodes can be drained. Thus this paper proposes survey about link lifetime prediction using geographical information.

Investigation of Chord Protocol in Peer to Peer-Wireless Mesh Network with Mobility

File sharing in networks is generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. However, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.

The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-Based Nanocomposite Hollow Sphere Structures

In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano-alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength, and energy absorption. It was found that, as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400μm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.

Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geo-Synthetic: Reinforced Earth Beds under Moving Load

In this paper, analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill-poor soil system overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behaviour of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedal iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil–foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include magnitude of applied load, velocity of load, damping, ultimate resistance of poor soil and granular fill layer. Range of values of parameters has been considered as per Indian Railway conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil–foundation system.

Studies on Lucrative Design of Waste Heat Recovery System for Air Conditioners

In this paper comprehensive studies have been carried out for the design optimization of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Numerical studies have been carried for the geometry optimization of a waste heat recovery system for domestic air conditioners. Numerical computations have been carried out using a validated 2d pressure based, unsteady, 2nd-order implicit, SST k-ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. At identical inflow and boundary conditions various geometries were tried and effort has been taken for proposing the best design criteria. Several combinations of pipe line shapes viz., straight and spiral with different number of coils for the radiator have been attempted and accordingly the design criteria has been proposed for the waste heat recovery system design. We have concluded that, within the given envelope, the geometry optimization is a meaningful objective for getting better performance of waste heat recovery system for air conditioners.

Singular Value Decomposition Based Optimisation of Design Parameters of a Gearbox

Singular value decomposition based optimisation of geometric design parameters of a 5-speed gearbox is studied. During the optimisation, a four-degree-of freedom torsional vibration model of the pinion gear-wheel gear system is obtained and the minimum singular value of the transfer matrix is considered as the objective functions. The computational cost of the associated singular value problems is quite low for the objective function, because it is only necessary to compute the largest and smallest singular values (μmax and μmin) that can be achieved by using selective eigenvalue solvers; the other singular values are not needed. The design parameters are optimised under several constraints that include bending stress, contact stress and constant distance between gear centres. Thus, by optimising the geometric parameters of the gearbox such as, the module, number of teeth and face width it is possible to obtain a light-weight-gearbox structure. It is concluded that the all optimised geometric design parameters also satisfy all constraints.

On the Optimality Assessment of Nanoparticle Size Spectrometry and Its Association to the Entropy Concept

Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nanoparticles under the influence of electric field in Electrical Mobility Spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined fielddiffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multichannel EMS. The result, a cloud of particles with no uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using Computational Fluid Dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.

Secure Bio Semantic Computing Scheme

In this paper, the secure BioSemantic Scheme is presented to bridge biological/biomedical research problems and computational solutions via semantic computing. Due to the diversity of problems in various research fields, the semantic capability description language (SCDL) plays and important role as a common language and generic form for problem formalization. SCDL is expected the essential for future semantic and logical computing in Biosemantic field. We show several example to Biomedical problems in this paper. Moreover, in the coming age of cloud computing, the security problem is considered to be crucial issue and we presented a practical scheme to cope with this problem.

Finite Element Analysis of the Blanking and Stamping Processes of Nuclear Fuel Spacer Grids

Spacer grid assembly supporting the nuclear fuel rods is an important concern in the design of structural components of a Pressurized Water Reactor (PWR). The spacer grid is composed by springs and dimples which are formed from a strip sheet by means of blanking and stamping processes. In this paper, the blanking process and tooling parameters are evaluated by means of a 2D plane-strain finite element model in order to evaluate the punch load and quality of the sheared edges of Inconel 718 strips used for nuclear spacer grids. A 3D finite element model is also proposed to predict the tooling loads resulting from the stamping process of a preformed Inconel 718 strip and to analyse the residual stress effects upon the spring and dimple design geometries of a nuclear spacer grid.

Case Studies in Three Domains of Learning: Cognitive, Affective, Psychomotor

Bloom’s Taxonomy has been changed during the years. The idea of this writing is about the revision that has happened in both facts and terms. It also contains case studies of using cognitive Bloom’s taxonomy in teaching geometric solids to the secondary school students, affective objectives in a creative workshop for adults and psychomotor objectives in fixing a malfunctioned refrigerator lamp. There is also pointed to the important role of classification objectives in adult education as a way to prevent memory loss.

Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions

The Composite Shear Walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.

Integrating HOTS Activities with GeoGebra in Pre-Service Teachers’ Preparation

High Order Thinking Skills (HOTS) are suggested today as essential for the cognitive development of students and as preparing them for real life skills. Teachers are encouraged to use HOTS activities in the classroom to help their students develop higher order skills and deep thinking. So it is essential to prepare preservice teachers to write and use HOTS activities for their students. This paper describes a model for integrating HOTS activities with GeoGebra in pre-service teachers’ preparation. This model describes four aspects of HOTS activities and working with them: activity components, preparation procedure, strategies and processes used in writing a HOTS activity and types of the HOTS activities. In addition, the paper describes the pre-service teachers' difficulties in preparing and working with HOTS activities, as well as their perceptions regarding the use of these activities and GeoGebra in the mathematics classroom. The paper also describes the contribution of a HOTS activity to pupils' learning of mathematics, where this HOTS activity was prepared and taught by one pre-service teacher.

Effects of Manufacture and Assembly Errors on the Output Error of Globoidal Cam Mechanisms

The output error of the globoidal cam mechanism can be considered as a relevant indicator of mechanism performance, because it determines kinematic and dynamical behavior of mechanical transmission. Based on the differential geometry and the rigid body transformations, the mathematical model of surface geometry of the globoidal cam is established. Then we present the analytical expression of the output error (including the transmission error and the displacement error along the output axis) by considering different manufacture and assembly errors. The effects of the center distance error, the perpendicular error between input and output axes and the rotational angle error of the globoidal cam on the output error are systematically analyzed. A globoidal cam mechanism which is widely used in automatic tool changer of CNC machines is applied for illustration. Our results show that the perpendicular error and the rotational angle error have little effects on the transmission error but have great effects on the displacement error along the output axis. This study plays an important role in the design, manufacture and assembly of the globoidal cam mechanism.