Acoustic Detection of the Red Date Palm Weevil

In this paper, acoustic techniques are used to detect hidden insect infestations of date palm tress (Phoenix dactylifera L.). In particular, we use an acoustic instrument for early discovery of the presence of a destructive insect pest commonly known as the Red Date Palm Weevil (RDPW) and scientifically as Rhynchophorus ferrugineus (Olivier). This type of insect attacks date palm tress and causes irreversible damages at late stages. As a result, the infected trees must be destroyed. Therefore, early presence detection is a major part in controlling the spread and economic damage caused by this type of infestation. Furthermore monitoring and early detection of the disease can asses in taking appropriate measures such as isolating or treating the infected trees. The acoustic system is evaluated in terms of its ability for early discovery of hidden bests inside the tested tree. When signal acquisitions is completed for a number of date palms, a signal processing technique known as time-frequency analysis is evaluated in terms of providing an estimate that can be visually used to recognize the acoustic signature of the RDPW. The testing instrument was tested in the laboratory first then; it was used on suspected or infested tress in the field. The final results indicate that the acoustic monitoring approach along with signal processing techniques are very promising for the early detection of presence of the larva as well as the adult pest in the date palms.

Two Dimensionnal Model for Extraction Packed Column Simulation using Finite Element Method

Modeling transfer phenomena in several chemical engineering operations leads to the resolution of partial differential equations systems. According to the complexity of the operations mechanisms, the equations present a nonlinear form and analytical solution became difficult, we have then to use numerical methods which are based on approximations in order to transform a differential system to an algebraic one.Finite element method is one of numerical methods which can be used to obtain an accurate solution in many complex cases of chemical engineering.The packed columns find a large application like contactor for liquid-liquid systems such solvent extraction. In the literature, the modeling of this type of equipment received less attention in comparison with the plate columns.A mathematical bidimensionnal model with radial and axial dispersion, simulating packed tower extraction behavior was developed and a partial differential equation was solved using the finite element method by adopting the Galerkine model. We developed a Mathcad program, which can be used for a similar equations and concentration profiles are obtained along the column. The influence of radial dispersion was prooved and it can-t be neglected, the results were compared with experimental concentration at the top of the column in the extraction system: acetone/toluene/water.

Negative Emotions and Ways of Overcoming them in Prison

The aim of this paper is description of the notion of the death for prisoners and the ways of deal with. They express indifference, coldness, inability to accept the blame, they have no shame and no empathy. Is it enough to perform acts verging on the death. In this paper we described mechanisms and regularities of selfdestructive behaviour in the view of the relevant literature? The explanation of the phenomenon is of a biological and sociopsychological nature. It must be clearly stated that all forms of selfdestructive behaviour result from various impulses, conflicts and deficits. That is why they should be treated differently in terms of motivation and functions which they perform in a given group of people. Behind self-destruction there seems to be a motivational mechanism which forces prisoners to rebel and fight against the hated law and penitentiary systems. The imprisoned believe that pain and suffering inflicted on them by themselves are better than passive acceptance of repression. The variety of self-destruction acts is wide, and some of them take strange forms. We assume that a life-death barrier is a kind of game for them. If they cannot change the degrading situation, their life loses sense.

Self Organizing Mixture Network in Mixture Discriminant Analysis: An Experimental Study

In the recent works related with mixture discriminant analysis (MDA), expectation and maximization (EM) algorithm is used to estimate parameters of Gaussian mixtures. But, initial values of EM algorithm affect the final parameters- estimates. Also, when EM algorithm is applied two times, for the same data set, it can be give different results for the estimate of parameters and this affect the classification accuracy of MDA. Forthcoming this problem, we use Self Organizing Mixture Network (SOMN) algorithm to estimate parameters of Gaussians mixtures in MDA that SOMN is more robust when random the initial values of the parameters are used [5]. We show effectiveness of this method on popular simulated waveform datasets and real glass data set.

Use of Heliox during Spontaneous Ventilation: Model Study

The study deals with the modelling of the gas flow during heliox therapy. A special model has been developed to study the effect of the helium upon the gas flow in the airways during the spontaneous breathing. Lower density of helium compared with air decreases the Reynolds number and it allows improving the flow during the spontaneous breathing. In the cases, where the flow becomes turbulent while the patient inspires air the flow is still laminar when the patient inspires heliox. The use of heliox decreases the work of breathing and improves ventilation. It allows in some cases to prevent the intubation of the patients.

64 bit Computer Architectures for Space Applications – A study

The more recent satellite projects/programs makes extensive usage of real – time embedded systems. 16 bit processors which meet the Mil-Std-1750 standard architecture have been used in on-board systems. Most of the Space Applications have been written in ADA. From a futuristic point of view, 32 bit/ 64 bit processors are needed in the area of spacecraft computing and therefore an effort is desirable in the study and survey of 64 bit architectures for space applications. This will also result in significant technology development in terms of VLSI and software tools for ADA (as the legacy code is in ADA). There are several basic requirements for a special processor for this purpose. They include Radiation Hardened (RadHard) devices, very low power dissipation, compatibility with existing operational systems, scalable architectures for higher computational needs, reliability, higher memory and I/O bandwidth, predictability, realtime operating system and manufacturability of such processors. Further on, these may include selection of FPGA devices, selection of EDA tool chains, design flow, partitioning of the design, pin count, performance evaluation, timing analysis etc. This project deals with a brief study of 32 and 64 bit processors readily available in the market and designing/ fabricating a 64 bit RISC processor named RISC MicroProcessor with added functionalities of an extended double precision floating point unit and a 32 bit signal processing unit acting as co-processors. In this paper, we emphasize the ease and importance of using Open Core (OpenSparc T1 Verilog RTL) and Open “Source" EDA tools such as Icarus to develop FPGA based prototypes quickly. Commercial tools such as Xilinx ISE for Synthesis are also used when appropriate.

EGCL: An Extended G-Code Language with Flow Control, Functions and Mnemonic Variables

In the context of computer numerical control (CNC) and computer aided manufacturing (CAM), the capabilities of programming languages such as symbolic and intuitive programming, program portability and geometrical portfolio have special importance. They allow to save time and to avoid errors during part programming and permit code re-usage. Our updated literature review indicates that the current state of art presents voids in parametric programming, program portability and programming flexibility. In response to this situation, this article presents a compiler implementation for EGCL (Extended G-code Language), a new, enriched CNC programming language which allows the use of descriptive variable names, geometrical functions and flow-control statements (if-then-else, while). Our compiler produces low-level generic, elementary ISO-compliant Gcode, thus allowing for flexibility in the choice of the executing CNC machine and in portability. Our results show that readable variable names and flow control statements allow a simplified and intuitive part programming and permit re-usage of the programs. Future work includes allowing the programmer to define own functions in terms of EGCL, in contrast to the current status of having them as library built-in functions.

Direct Democracy and Social Contract in Ancient Athens

In the present essay, a model of choice by actors is analysedby utilizing the theory of chaos to explain how change comes about. Then, by using ancient and modern sources of literature, the theory of the social contract is analysed as a historical phenomenon that first appeared during the period of Classical Greece. Then, based on the findings of this analysis, the practice of direct democracy and public choice in ancient Athens is analysed, through two historical cases: Eubulus and Lycurgus political program in the second half of the 4th century. The main finding of this research is that these policies can be interpreted as an implementation of a social contract, through which citizens were taking decisions based on rational choice according to economic considerations.

High Energy Dual-Wavelength Mid-Infrared Extracavity KTA Optical Parametric Oscillator

A high energy dual-wavelength extracavity KTA optical parametric oscillator (OPO) with excellent stability and beam quality, which is pumped by a Q-switched single-longitudinal-mode Nd:YAG laser, has been demonstrated based on a type II noncritical phase matching (NCPM) KTA crystal. The maximum pulse energy of 10.2 mJ with the output stability of better than 4.1% rms at 3.467 μm is obtained at the repetition rate of 10 Hz and pulse width of 2 ns, and the 11.9 mJ of 1.535 μm radiation is obtained simultaneously. This extracavity NCPM KTA OPO is very useful when high energy, high beam quality and smooth time domain are needed.

Comparing Transformational Leadership in Successful and Unsuccessful Companies

In this article, while it is attempted to describe the problem and its importance, transformational leadership is studied by considering leadership theories. Issues such as the definition of transformational leadership and its aspects are compared on the basis of the ideas of various connoisseurs and then it (transformational leadership) is examined in successful and unsuccessful companies. According to the methodology, the method of research, hypotheses, population and statistical sample are investigated and research findings are analyzed by using descriptive and inferential statistical methods in the framework of analytical tables. Finally, our conclusion is provided by considering the results of statistical tests. The final result shows that transformational leadership is significantly higher in successful companies than unsuccessful ones P

Correspondence Theorem for Anti L-fuzzy Normal Subgroups

In this paper the concept of the cosets of an anti Lfuzzy normal subgroup of a group is given. Furthermore, the group G/A of cosets of an anti L-fuzzy normal subgroup A of a group G is shown to be isomorphic to a factor group of G in a natural way. Finally, we prove that if f : G1 -→ G2 is an epimorphism of groups, then there is a one-to-one order-preserving correspondence between the anti L-fuzzy normal subgroups of G2 and those of G1 which are constant on the kernel of f.

Surrogate based Evolutionary Algorithm for Design Optimization

Optimization is often a critical issue for most system design problems. Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, finding optimal solution to complex high dimensional, multimodal problems often require highly computationally expensive function evaluations and hence are practically prohibitive. The Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model presented in our earlier work [14] reduced computation time by controlled use of meta-models to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the meta-model are generated from a single uniform model. Situations like model formation involving variable input dimensions and noisy data certainly can not be covered by this assumption. In this paper we present an enhanced version of DAFHEA that incorporates a multiple-model based learning approach for the SVM approximator. DAFHEA-II (the enhanced version of the DAFHEA framework) also overcomes the high computational expense involved with additional clustering requirements of the original DAFHEA framework. The proposed framework has been tested on several benchmark functions and the empirical results illustrate the advantages of the proposed technique.

Structural Characteristics of Batch Processed Agro-Waste Fibres

The characterisation of agro-wastes fibres for composite applications from Nigeria using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) has been done. Fibres extracted from groundnut shell, coconut husk, rice husk, palm fruit bunch and palm fruit stalk are processed using two novel cellulose fibre production methods developed by the authors. Cellulose apparent crystallinity calculated using the deconvolution of the diffractometer trace shows that the amorphous portion of cellulose was permeable to hydrolysis yielding high crystallinity after treatment. All diffratograms show typical cellulose structure with well-defined 110, 200 and 040 peaks. Palm fruit fibres had the highest 200 crystalline cellulose peaks compared to others and it is an indication of rich cellulose content. Surface examination of the resulting fibres using SEM indicates the presence of regular cellulose network structure with some agglomerated laminated layer of thin leaves of cellulose microfibrils. The surfaces were relatively smooth indicating the removal of hemicellulose, lignin and pectin.

Ruin Probabilities with Dependent Rates of Interest and Autoregressive Moving Average Structures

This paper studies ruin probabilities in two discrete-time risk models with premiums, claims and rates of interest modelled by three autoregressive moving average processes. Generalized Lundberg inequalities for ruin probabilities are derived by using recursive technique. A numerical example is given to illustrate the applications of these probability inequalities.

Hybrid Intelligent Intrusion Detection System

Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.

Comparison of Different Advanced Oxidation Processes for Degrading 4-Chlorophenol

The removal efficiency of 4-chlorophenol with different advanced oxidation processes have been studied. Oxidation experiments were carried out using two 4-chlorophenol concentrations: 100 mg L-1 and 250 mg L-1 and UV generated from a KrCl excilamp with (molar ratio H2O2: 4-chlorophenol = 25:1) and without H2O2, and, with Fenton process (molar ratio H2O2:4- chlorophenol of 25:1 and Fe2+ concentration of 5 mg L-1). The results show that there is no significant difference in the 4- chlorophenol conversion when using one of the three assayed methods. However, significant concentrations of the photoproductos still remained in the media when the chosen treatment involves UV without hydrogen peroxide. Fenton process removed all the intermediate photoproducts except for the hydroquinone and the 1,2,4-trihydroxybenzene. In the case of UV and hydrogen peroxide all the intermediate photoproducts are removed. Microbial bioassays were carried out utilising the naturally luminescent bacterium Vibrio fischeri and a genetically modified Pseudomonas putida isolated from a waste treatment plant receiving phenolic waste. The results using V. fischeri show that with samples after degradation, only the UV treatment showed toxicity (IC50 =38) whereas with H2O2 and Fenton reactions the samples exhibited no toxicity after treatment in the range of concentrations studied. Using the Pseudomonas putida biosensor no toxicity could be detected for all the samples following treatment due to the higher tolerance of the organism to phenol concentrations encountered.

Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis

In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.

Experimental and Numerical Investigation of the Dispersion of Microparticles Emitted by Machining Operation

As a part of the development of a numerical method of close capture exhausts systems for machining devices, a test rig recreating a situation similar to a grinding operation, but in a perfectly controlled environment, is used. The properties of the obtained spray of solid particles are initially characterized using particle tracking velocimetry (PTV), in order to obtain input and validation parameters for numerical simulations. The dispersion of a tracer gas (SF6) emitted simultaneously with the particle jet is then studied experimentally, as the dispersion of such a gas is representative of that of finer particles, whose aerodynamic response time is negligible. Finally, complete modeling of the test rig is achieved to allow comparison with experimental results and thus to progress towards validation of the models used to describe a twophase flow generated by machining operation.

Supply Chain Model of Catfish Production and Trade in Yogyakarta, Indonesia

Currently, the demand for marine and fisheries commodity in Yogyakarta, Indonesia continues to increase. The existing condition shows that the aquaculture supply cannot be supplied by Yogyakarta region itself, but still need to be supported by regions outside Yogyakarta. The effort to optimize the market is initiated by reviewing and designing the supply chain of production and trade of aquaculture commodity in order to create the implementation of aquaculture production and trade commodity optimally. This formulated supply chain model indicates 4 performance indicators of measurable success in terms of: (1) efficiency; (2) flexibility; (3) responsiveness; and (4) quality. These indicators had been exercised as the success benchmarks for priority marketing management in local level as well as national level. The result of this research indicates that if the catfish fishery system is managed as business as usual then the catfish demand in Yogyakarta region will experience to increase in the future. The increase of demand is inline with the increase of number of people in Yogyakarta and also the fluctuation of catfish consumption per capita. The highest production of catfish will experience in the third year approximately 30,118 tons. Other result of the research indicates that the catfish demand in Yogyakarta region cannot be supplied yet from the local region. Therefore, to fulfill the supply from outside Yogyakarta region, the local farmers should improve the supply through land extension. The fluctuation of commodity price will experience in the future annually and the catfish supply from outside Yogyakarta region will be lowering the price in the market.

Computational Simulation of Turbulence Heat Transfer in Multiple Rectangular Ducts

This study comprehensively simulate the use of k-ε model for predicting flow and heat transfer with measured flow field data in a stationary duct with elucidates on the detailed physics encountered in the fully developed flow region, and the sharp 180° bend region. Among the major flow features predicted with accuracy are flow transition at the entrance of the duct, the distribution of mean and turbulent quantities in the developing, fully developed, and sharp 180° bend, the development of secondary flows in the duct cross-section and the sharp 180° bend, and heat transfer augmentation. Turbulence intensities in the sharp 180° bend are found to reach high values and local heat transfer comparisons show that the heat transfer augmentation shifts towards the wall and along the duct. Therefore, understanding of the unsteady heat transfer in sharp 180° bends is important. The design and simulation are related to concept of fluid mechanics, heat transfer and thermodynamics. Simulation study has been conducted on the response of turbulent flow in a rectangular duct in order to evaluate the heat transfer rate along the small scale multiple rectangular duct