Heritability Estimates of Lactation Traits in Maltese Goat

Data on 657 lactation from 163 Maltese goat, collected over a 5-year period were analyzed by a mixed model to estimate the variance components for heritability. The considered lactation traits were: milk yield (MY) and lactation length (LL). Year, parity and type of birth (single or twin) were significant sources of variation for lactation length; on the other hand milk yield was significantly influenced only by the year. The average MY was 352.34 kg and the average LL was 230 days. Estimates of heritability were 0.21 and 0.15 for MY and LL respectively. These values suggest there is low correlation between genotype and phenotype so it may be difficult to evaluate animals directly on phenotype. So, the genetic improvement of this breed may be quite slow without the support of progeny test aimed to select Maltese breeders.

A Nonoblivious Image Watermarking System Based on Singular Value Decomposition and Texture Segmentation

In this paper, a robust digital image watermarking scheme for copyright protection applications using the singular value decomposition (SVD) is proposed. In this scheme, an entropy masking model has been applied on the host image for the texture segmentation. Moreover, the local luminance and textures of the host image are considered for watermark embedding procedure to increase the robustness of the watermarking scheme. In contrast to all existing SVD-based watermarking systems that have been designed to embed visual watermarks, our system uses a pseudo-random sequence as a watermark. We have tested the performance of our method using a wide variety of image processing attacks on different test images. A comparison is made between the results of our proposed algorithm with those of a wavelet-based method to demonstrate the superior performance of our algorithm.

Adaptive PID Controller based on Reinforcement Learning for Wind Turbine Control

A self tuning PID control strategy using reinforcement learning is proposed in this paper to deal with the control of wind energy conversion systems (WECS). Actor-Critic learning is used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network is used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for WECS and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.

The Radial Pulse Wave and Blood Viscosity

The aim of this study was to investigate the effect of blood viscosity on the radial pulse wave. For this, we obtained the radial pulse wave of 15 males with abnormal high hematocrit level and 47 males with normal hematocrit level at the age of thirties and forties. Various variables of the radial pulse wave between two groups were analyzed and compared by Student's T test. There are significant differences in several variables about height, time and area of the pulse wave. The first peak of the radial pulse wave was higher in abnormal high hematocrit group, but the third peak was higher and longer in normal hematocrit group. Our results suggest that the radial pulse wave can be used for diagnosis of high blood viscosity and more clinical application.

Study on the Relations between One's Personality Dimensions and his Personality Judgment about Friend based on Reality Distortion

Judgment is affected by many agents and distortion in this assessment is unpreventable. Personality dimensions are among those factors that interfere with the distortion. In this research, the relations between personality dimensions of subject and his judgment on friends- personality dimensions is investigated. One-hundred friend couples completed both NEO Five Factor Inventory (NEOFFI) and Ahvaz Reality Distortion Inventory (ARDI) to make judgments about themselves and their friends. Observations show that judge-s Agreement and Neuroticism dimensions are impressed by reality distortion. On the other hand, this reality distortion interferes with one-s evaluation of his friend-s Agreement, Neuroticism, and Conscientiousness dimensions. Conscientiousness with suppressive effect on judge-s other dimensions plays the irrelevant role on personality judgment. Therefore, observer-rating tools which are used as a conventional criterion seem to be not valid because of the reality distortion due to judge-s personality dimensions.

Electromyographic Activity of the Medial Gastrocnemius and Lateral Gastrocnemius Muscle during Salat-s and Specific Exercise

This paper investigates the activity of the gastrocnemius (Gas) muscle in healthy subjects during salat (ruku- position) and specific exercise [Unilateral Plantar Flexion Exercise (UPFE)] using electromyography (EMG). Both lateral and medial Gas muscles were assessed. A group of undergraduates aged between 19 to 25 years voluntarily participated in this study. The myoelectric activity of the muscles were recorded and analyzed. The finding indicated that there were contractions of the muscles during the salat and exercise with almost same EMG-s level. From the result, Wilcoxon-s Rank Sum test showed no significant difference between ruku- and UPFE for both medial (p=0.082) and lateral (p=0.226) of GAS muscles. Therefore, salat may be useful in strengthening exercise and also in rehabilitation programs for lower limb activities.

Supervisory Fuzzy Learning Control for Underwater Target Tracking

This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.

Human Induced Dynamic Loading on Stairs

Based on experimental data using accelerometry technology there was developed an analytical model that approximates human induced ground reaction forces in vertical, longitudinal and lateral directions ascending and descending the stairs. Proposed dynamic loading factors and corresponding phase shifts for the first five harmonics of continuous walking force history in case of stair ascend and descend. Into account is taken imperfectness of individual footfall forcing functions, differences between continuous walking force histories among individuals. There is proposed mean synthetic continuous walking force history that can be used in numerical simulations of human movement on the stairs.

A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network

In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.

Determination of Cr Content in Canned Fish Marketed in Iran

The presence of heavy metals in the environment could constitute a hazard to food security and public health. These can be accumulated in aquatic animals such as fish. Samples of four popular brands of canned fish in the Iranian market (yellowfin tuna, common Kilka, Kawakawa and longtail tuna) were analyzed for level of Cr after wet digestion with acids using graphite furnace atomic absorption spectrophotometry. The mean concentrations for Cr in the different brands were: 2.57, 3.24, 3.16 and 1.65 μg/g for brands A, B, C and D respectively. Significant differences were observed in the Cr levels between all of the different brands of canned fish evaluated in this study. The Cr concentrations for the varieties of canned fishes were generally within the FAO/WHO, U.S. FDA and U.S. EPA recommended limits for fish.

Roller Guide Design and Manufacturing for Spatial Cylindrical Cams

This paper was aimed at developing a computer aided design and manufacturing system for spatial cylindrical cams. In the proposed system, a milling tool with a diameter smaller than that of the roller, instead of the standard cutter for traditional machining process, was used to generate the tool path for spatial cams. To verify the feasibility of the proposed method, a multi-axis machining simulation software was further used to simulate the practical milling operation of spatial cams. It was observed from computer simulation that the tool path of small-sized cutter were within the motion range of a standard cutter, no occurrence of overcutting. Examination of a finished cam component clearly verifies the accuracy of the tool path generated for small-sized milling tool. It is believed that the use of small-sized cutter for the machining of the spatial cylindrical cams can generate a better surface morphology with higher accuracy. The improvement in efficiency and cost for the manufacturing of the spatial cylindrical cam can be expected through the proposed method.

The Model of the Genre of Literary Portrait in Modern Literary Criticism

In modern literary criticism the problem of genre is one of discussion. Genre is a phenomenon, located in the intersection of the synchronous and diachronic processes in the development of literature, and this is due to the complexity of its solutions. It defines the place of contact between literary works and literary process.

An HCI Template for Distributed Applications

Both software applications and their development environment are becoming more and more distributed. This trend impacts not only the way software computes, but also how it looks. This article proposes a Human Computer Interface (HCI) template from three representative applications we have developed. These applications include a Multi-Agent System based software, a 3D Internet computer game with distributed game world logic, and a programming language environment used in constructing distributed neural network and its visualizations. HCI concepts that are common to these applications are described in abstract terms in the template. These include off-line presentation of global entities, entities inside a hierarchical namespace, communication and languages, reconfiguration of entity references in a graph, impersonation and access right, etc. We believe the metaphor that underlies an HCI concept as well as the relationships between a bunch of HCI concepts are crucial to the design of software systems and vice versa.

Adequacy of Object-Oriented Framework System-Based Testing Techniques

An application framework provides a reusable design and implementation for a family of software systems. If the framework contains defects, the defects will be passed on to the applications developed from the framework. Framework defects are hard to discover at the time the framework is instantiated. Therefore, it is important to remove all defects before instantiating the framework. In this paper, two measures for the adequacy of an object-oriented system-based testing technique are introduced. The measures assess the usefulness and uniqueness of the testing technique. The two measures are applied to experimentally compare the adequacy of two testing techniques introduced to test objectoriented frameworks at the system level. The two considered testing techniques are the New Framework Test Approach and Testing Frameworks Through Hooks (TFTH). The techniques are also compared analytically in terms of their coverage power of objectoriented aspects. The comparison study results show that the TFTH technique is better than the New Framework Test Approach in terms of usefulness degree, uniqueness degree, and coverage power.

Static and Dynamic Complexity Analysis of Software Metrics

Software complexity metrics are used to predict critical information about reliability and maintainability of software systems. Object oriented software development requires a different approach to software complexity metrics. Object Oriented Software Metrics can be broadly classified into static and dynamic metrics. Static Metrics give information at the code level whereas dynamic metrics provide information on the actual runtime. In this paper we will discuss the various complexity metrics, and the comparison between static and dynamic complexity.

Designing a Rescue System for Earthquake-Stricken Area with the Aim of Facilitation and Accelerating Accessibilities (Case Study: City of Tehran)

Natural disasters, including earthquake, kill many people around the world every year. Society rescue actions, which start after the earthquake and are called LAST in abbreviation, include locating, access, stabilization and transportation. In the present article, we have studied the process of local accessibility to the injured and transporting them to health care centers. With regard the heavy traffic load due to earthquake, the destruction of connecting roads and bridges and the heavy debris in alleys and street, which put the lives of the injured and the people buried under the debris in danger, accelerating the rescue actions and facilitating the accessibilities are of great importance, obviously. Tehran, the capital of Iran, is among the crowded cities in the world and is the center of extensive economic, political, cultural and social activities. Tehran has a population of about 9.5 millions and because of the immigration of people from the surrounding cities. Furthermore, considering the fact that Tehran is located on two important and large faults, a 6 Richter magnitude earthquake in this city could lead to the greatest catastrophe during the entire human history. The present study is a kind of review and a major part of the required information for it, has been obtained from libraries all of the rescue vehicles around the world, including rescue helicopters, ambulances, fire fighting vehicles and rescue boats, and their applied technology, and also the robots specifically designed for the rescue system and the advantages and disadvantages of them, have been investigated. The studies show that there is a significant relationship between the rescue team-s arrival time at the incident zone and the number of saved people; so that, if the duration of burial under debris 30 minutes, the probability of survival is %99.3, after a day is %81, after 2days is %19 and after 5days is %7.4. The exiting transport systems all have some defects. If these defects are removed, more people could be saved each hour and the preparedness against natural disasters is increased. In this study, transport system has been designed for the rescue team and the injured; which could carry the rescue team to the incident zone and the injured to the health care centers. In addition, this system is able to fly in the air and move on the earth as well; so that the destruction of roads and the heavy traffic load could not prevent the rescue team from arriving early at the incident zone. The system also has the equipment required firebird for debris removing, optimum transport of the injured and first aid.

Combined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems

Combinatorial optimization problems arise in many scientific and practical applications. Therefore many researchers try to find or improve different methods to solve these problems with high quality results and in less time. Genetic Algorithm (GA) and Simulated Annealing (SA) have been used to solve optimization problems. Both GA and SA search a solution space throughout a sequence of iterative states. However, there are also significant differences between them. The GA mechanism is parallel on a set of solutions and exchanges information using the crossover operation. SA works on a single solution at a time. In this work SA and GA are combined using new technique in order to overcome the disadvantages' of both algorithms.

Key Frames Extraction for Sign Language Video Analysis and Recognition

In this paper we proposed a method for finding video frames representing one sign in the finger alphabet. The method is based on determining hands location, segmentation and the use of standard video quality evaluation metrics. Metric calculation is performed only in regions of interest. Sliding mechanism for finding local extrema and adaptive threshold based on local averaging is used for key frames selection. The success rate is evaluated by recall, precision and F1 measure. The method effectiveness is compared with metrics applied to all frames. Proposed method is fast, effective and relatively easy to realize by simple input video preprocessing and subsequent use of tools designed for video quality measuring.

SAF: A Substitution and Alignment Free Similarity Measure for Protein Sequences

The literature reports a large number of approaches for measuring the similarity between protein sequences. Most of these approaches estimate this similarity using alignment-based techniques that do not necessarily yield biologically plausible results, for two reasons. First, for the case of non-alignable (i.e., not yet definitively aligned and biologically approved) sequences such as multi-domain, circular permutation and tandem repeat protein sequences, alignment-based approaches do not succeed in producing biologically plausible results. This is due to the nature of the alignment, which is based on the matching of subsequences in equivalent positions, while non-alignable proteins often have similar and conserved domains in non-equivalent positions. Second, the alignment-based approaches lead to similarity measures that depend heavily on the parameters set by the user for the alignment (e.g., gap penalties and substitution matrices). For easily alignable protein sequences, it's possible to supply a suitable combination of input parameters that allows such an approach to yield biologically plausible results. However, for difficult-to-align protein sequences, supplying different combinations of input parameters yields different results. Such variable results create ambiguities and complicate the similarity measurement task. To overcome these drawbacks, this paper describes a novel and effective approach for measuring the similarity between protein sequences, called SAF for Substitution and Alignment Free. Without resorting either to the alignment of protein sequences or to substitution relations between amino acids, SAF is able to efficiently detect the significant subsequences that best represent the intrinsic properties of protein sequences, those underlying the chronological dependencies of structural features and biochemical activities of protein sequences. Moreover, by using a new efficient subsequence matching scheme, SAF more efficiently handles protein sequences that contain similar structural features with significant meaning in chronologically non-equivalent positions. To show the effectiveness of SAF, extensive experiments were performed on protein datasets from different databases, and the results were compared with those obtained by several mainstream algorithms.

Mining Genes Relations in Microarray Data Combined with Ontology in Colon Cancer Automated Diagnosis System

MATCH project [1] entitle the development of an automatic diagnosis system that aims to support treatment of colon cancer diseases by discovering mutations that occurs to tumour suppressor genes (TSGs) and contributes to the development of cancerous tumours. The constitution of the system is based on a) colon cancer clinical data and b) biological information that will be derived by data mining techniques from genomic and proteomic sources The core mining module will consist of the popular, well tested hybrid feature extraction methods, and new combined algorithms, designed especially for the project. Elements of rough sets, evolutionary computing, cluster analysis, self-organization maps and association rules will be used to discover the annotations between genes, and their influence on tumours [2]-[11]. The methods used to process the data have to address their high complexity, potential inconsistency and problems of dealing with the missing values. They must integrate all the useful information necessary to solve the expert's question. For this purpose, the system has to learn from data, or be able to interactively specify by a domain specialist, the part of the knowledge structure it needs to answer a given query. The program should also take into account the importance/rank of the particular parts of data it analyses, and adjusts the used algorithms accordingly.