Game-Tree Simplification by Pattern Matching and Its Acceleration Approach using an FPGA

In this paper, we propose a Connect6 solver which adopts a hybrid approach based on a tree-search algorithm and image processing techniques. The solver must deal with the complicated computation and provide high performance in order to make real-time decisions. The proposed approach enables the solver to be implemented on a single Spartan-6 XC6SLX45 FPGA produced by XILINX without using any external devices. The compact implementation is achieved through image processing techniques to optimize a tree-search algorithm of the Connect6 game. The tree search is widely used in computer games and the optimal search brings the best move in every turn of a computer game. Thus, many tree-search algorithms such as Minimax algorithm and artificial intelligence approaches have been widely proposed in this field. However, there is one fundamental problem in this area; the computation time increases rapidly in response to the growth of the game tree. It means the larger the game tree is, the bigger the circuit size is because of their highly parallel computation characteristics. Here, this paper aims to reduce the size of a Connect6 game tree using image processing techniques and its position symmetric property. The proposed solver is composed of four computational modules: a two-dimensional checkmate strategy checker, a template matching module, a skilful-line predictor, and a next-move selector. These modules work well together in selecting next moves from some candidates and the total amount of their circuits is small. The details of the hardware design for an FPGA implementation are described and the performance of this design is also shown in this paper.

Virtual Reality for Mutual Understanding in Landscape Planning

This paper argues that fostering mutual understanding in landscape planning is as much about the planners educating stakeholder groups as the stakeholders educating the planners. In other words it is an epistemological agreement as to the meaning and nature of place, especially where an effort is made to go beyond the quantitative aspects, which can be achieved by the phenomenological experience of the Virtual Reality (VR) environment. This education needs to be a bi-directional process in which distance can be both temporal as well as spatial separation of participants, that there needs to be a common framework of understanding in which neither 'side' is disadvantaged during the process of information exchange and it follows that a medium such as VR offers an effective way of overcoming some of the shortcomings of traditional media by taking advantage of continuing technological advances in Information, Technology and Communications (ITC). In this paper we make particular reference to this as an extension to Geographical Information Systems (GIS). VR as a two-way communication tool offers considerable potential particularly in the area of Public Participation GIS (PPGIS). Information rich virtual environments that can operate over broadband networks are now possible and thus allow for the representation of large amounts of qualitative and quantitative information 'side-by-side'. Therefore, with broadband access becoming standard for households and enterprises alike, distributed virtual reality environments have great potential to contribute to enabling stakeholder participation and mutual learning within the planning context.

Implementation of Interactive Computer Aided Instruction in Learning of Javanese Traditional Classic Dance

Traditional Javanese classic dance is a valuable inheritance in Java Indonesia. Nowadays, this treasure of culture is no longer belonging to Javanese people only. Many art departments from universities around the world already put this as a subject in their curriculum. Nonetheless, dance is a practical skill. It needs to be practices so often while accompanied by an instructor to get the right technique. An interactive Computer Aided Instruction (iCAI) that can interactively assist the student to practice is developed. By using this software students can conduct a self practice in studio and get some feedbacks from the software. This CAI is not intended to replace the instructor, but to assist them in increasing the student fly-time in practice.

Extensiveness and Effectiveness of Corporate Governance Regulations in South-Eastern Europe

The purpose of the article is to illustrate the main characteristics of the corporate governance challenge facing the countries of South-Eastern Europe (SEE) and to subsequently determine and assess the extensiveness and effectiveness of corporate governance regulations in these countries. Therefore, we start with an overview on the subject of the key problems of corporate governance in transition. We then address the issue of corporate governance measurement for SEE countries. To this end, we include a review of the methodological framework for determining both the extensiveness and the effectiveness of corporate governance legislation. We then focus on the actual analysis of the quality of corporate governance codes, as well as of legal institutions effectiveness and provide a measure of corporate governance in Romania and other SEE emerging markets. The paper concludes by emphasizing the corporate governance enforcement gap and by identifying research issues that require further study.

Design of an SNMP Agent for OSGi Service Platforms

On one hand, SNMP (Simple Network Management Protocol) allows integrating different enterprise elements connected through Internet into a standardized remote management. On the other hand, as a consequence of the success of Intelligent Houses they can be connected through Internet now by means of a residential gateway according to a common standard called OSGi (Open Services Gateway initiative). Due to the specifics of OSGi Service Platforms and their dynamic nature, specific design criterions should be defined to implement SNMP Agents for OSGi in order to integrate them into the SNMP remote management. Based on the analysis of the relation between both standards (SNMP and OSGi), this paper shows how OSGi Service Platforms can be included into the SNMP management of a global enterprise, giving implementation details about an SNMP Agent solution and the definition of a new MIB (Management Information Base) for managing OSGi platforms that takes into account the specifics and dynamic nature of OSGi.

Fuzzy Rules Emulated Network Adaptive Controller with Unfixed Learning Rate for a Class of Unknown Discrete-time Nonlinear Systems

A direct adaptive controller for a class of unknown nonlinear discrete-time systems is presented in this article. The proposed controller is constructed by fuzzy rules emulated network (FREN). With its simple structure, the human knowledge about the plant is transferred to be if-then rules for setting the network. These adjustable parameters inside FREN are tuned by the learning mechanism with time varying step size or learning rate. The variation of learning rate is introduced by main theorem to improve the system performance and stabilization. Furthermore, the boundary of adjustable parameters is guaranteed through the on-line learning and membership functions properties. The validation of the theoretical findings is represented by some illustrated examples.

Optimal All-to-All Personalized Communication in All-Port Tori

All-to-all personalized communication, also known as complete exchange, is one of the most dense communication patterns in parallel computing. In this paper, we propose new indirect algorithms for complete exchange on all-port ring and torus. The new algorithms fully utilize all communication links and transmit messages along shortest paths to completely achieve the theoretical lower bounds on message transmission, which have not be achieved among other existing indirect algorithms. For 2D r × c ( r % c ) all-port torus, the algorithm has time complexities of optimal transmission cost and O(c) message startup cost. In addition, the proposed algorithms accommodate non-power-of-two tori where the number of nodes in each dimension needs not be power-of-two or square. Finally, the algorithms are conceptually simple and symmetrical for every message and every node so that they can be easily implemented and achieve the optimum in practice.

A Novel Multiplex Real-Time PCR Assay Using TaqMan MGB Probes for Rapid Detection of Trisomy 21

Cytogenetic analysis still remains the gold standard method for prenatal diagnosis of trisomy 21 (Down syndrome, DS). Nevertheless, the conventional cytogenetic analysis needs live cultured cells and is too time-consuming for clinical application. In contrast, molecular methods such as FISH, QF-PCR, MLPA and quantitative Real-time PCR are rapid assays with results available in 24h. In the present study, we have successfully used a novel MGB TaqMan probe-based real time PCR assay for rapid diagnosis of trisomy 21 status in Down syndrome samples. We have also compared the results of this molecular method with corresponding results obtained by the cytogenetic analysis. Blood samples obtained from DS patients (n=25) and normal controls (n=20) were tested by quantitative Real-time PCR in parallel to standard G-banding analysis. Genomic DNA was extracted from peripheral blood lymphocytes. A high precision TaqMan probe quantitative Real-time PCR assay was developed to determine the gene dosage of DSCAM (target gene on 21q22.2) relative to PMP22 (reference gene on 17p11.2). The DSCAM/PMP22 ratio was calculated according to the formula; ratio=2 -ΔΔCT. The quantitative Real-time PCR was able to distinguish between trisomy 21 samples and normal controls with the gene ratios of 1.49±0.13 and 1.03±0.04 respectively (p value

Mimicking Morphogenesis for Robust Behaviour of Cellular Architectures

Morphogenesis is the process that underpins the selforganised development and regeneration of biological systems. The ability to mimick morphogenesis in artificial systems has great potential for many engineering applications, including production of biological tissue, design of robust electronic systems and the co-ordination of parallel computing. Previous attempts to mimick these complex dynamics within artificial systems have relied upon the use of evolutionary algorithms that have limited their size and complexity. This paper will present some insight into the underlying dynamics of morphogenesis, then show how to, without the assistance of evolutionary algorithms, design cellular architectures that converge to complex patterns.

Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology

Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.

Hospitality Program Postgraduate Theses: What Hinders Their Accomplishment?

Postgraduate education is generally aimed at providing in-depth knowledge and understanding that include general philosophy in the world sciences, management, technologies, applications and other elements closely related to specific areas. In most universities, besides core and non-core subjects, a thesis is one of the requirements for the postgraduate student to accomplish before graduating. This paper reports on the empirical investigation into attributes that are associated with the obstacles to thesis accomplishment among postgraduate students. Using the quantitative approach the experiences of postgraduate students were tapped. Findings clearly revealed that information seeking, writing skills and other factors which refer to supervisor and time management, in particular, are recognized as contributory factors which positively or negatively influence postgraduates’ thesis accomplishment. Among these, writing skills dimensions were found to be the most difficult process in thesis accomplishment compared to information seeking and other factors. This pessimistic indication has provided some implications not only for the students but supervisors and institutions as a whole.

A Strategy to Optimize the SPC Scheme for Mass Production of HDD Arm with ClusteringTechnique and Three-Way Control Chart

Consider a mass production of HDD arms where hundreds of CNC machines are used to manufacturer the HDD arms. According to an overwhelming number of machines and models of arm, construction of separate control chart for monitoring each HDD arm model by each machine is not feasible. This research proposed a strategy to optimize the SPC management on shop floor. The procedure started from identifying the clusters of the machine with similar manufacturing performance using clustering technique. The three way control chart ( I - MR - R ) is then applied to each clustered group of machine. This proposed research has advantageous to the manufacturer in terms of not only better performance of the SPC but also the quality management paradigm.

Progressive AAM Based Robust Face Alignment

AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In case the initial values are a little far distant from the global optimum values, there exists a pretty good possibility that AAM-based face alignment may converge to a local minimum. In this paper, we propose a progressive AAM-based face alignment algorithm which first finds the feature parameter vector fitting the inner facial feature points of the face and later localize the feature points of the whole face using the first information. The proposed progressive AAM-based face alignment algorithm utilizes the fact that the feature points of the inner part of the face are less variant and less affected by the background surrounding the face than those of the outer part (like the chin contour). The proposed algorithm consists of two stages: modeling and relation derivation stage and fitting stage. Modeling and relation derivation stage first needs to construct two AAM models: the inner face AAM model and the whole face AAM model and then derive relation matrix between the inner face AAM parameter vector and the whole face AAM model parameter vector. In the fitting stage, the proposed algorithm aligns face progressively through two phases. In the first phase, the proposed algorithm will find the feature parameter vector fitting the inner facial AAM model into a new input face image, and then in the second phase it localizes the whole facial feature points of the new input face image based on the whole face AAM model using the initial parameter vector estimated from using the inner feature parameter vector obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment algorithm is more robust with respect to pose, illumination, and face background than the conventional basic AAM-based face alignment algorithm.

A Fuzzy Time Series Forecasting Model for Multi-Variate Forecasting Analysis with Fuzzy C-Means Clustering

In this study, a fuzzy integrated logical forecasting method (FILF) is extended for multi-variate systems by using a vector autoregressive model. Fuzzy time series forecasting (FTSF) method was recently introduced by Song and Chissom [1]-[2] after that Chen improved the FTSF method. Rather than the existing literature, the proposed model is not only compared with the previous FTS models, but also with the conventional time series methods such as the classical vector autoregressive model. The cluster optimization is based on the C-means clustering method. An empirical study is performed for the prediction of the chartering rates of a group of dry bulk cargo ships. The root mean squared error (RMSE) metric is used for the comparing of results of methods and the proposed method has superiority than both traditional FTS methods and also the classical time series methods.

Experimental Study of Dynamic Characteristics of the Electromagnet Actuators with Linear Movement

An approach for experimental measurement of the dynamic characteristics of linear electromagnet actuators is presented. It uses accelerometer sensor to register the armature acceleration. The velocity and displacement of the moving parts can be obtained by integration of the acceleration results. The armature movement of permanent magnet linear actuator is acquired using this technique. The results are analyzed and the performance of the supposed approach is compared with the most commonly used experimental setup where the displacement of the armature vs. time is measured instead of its acceleration.

A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks

In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.

Antioxidant Components of Fumaria Species(Papaveraceae)

The genus Fumaria L. (Papaveraceae) in Iran comprises 8 species with a vast medicinal use in Asian folk medicine. These herbs are considered to be useful in the treatment of gastrointestinal disease and skin disorders. Antioxidant activities of alkaloids and phenolic extracts of these species had been studied previously. These species are: F. officinalis, F. parviflora, F. asepala, F. densiflora, F. schleicheri, F. vaillantii and F. indica. More than 50 populations of Fumaria species were sampled from nature. In this study different fatty acids are extracted. Their picks were recorded by GC technique. This species contain some kind of fatty acids with antioxidant effects. A part of these lipids are phospholipids. As these are unsaturated fatty acids they may have industrial use as natural additive to cosmetics, dermal and oral medicines. The presences of different materials are discussed. Our studies for antioxidant effects of these substances are continued.

EZW Coding System with Artificial Neural Networks

Image compression plays a vital role in today-s communication. The limitation in allocated bandwidth leads to slower communication. To exchange the rate of transmission in the limited bandwidth the Image data must be compressed before transmission. Basically there are two types of compressions, 1) LOSSY compression and 2) LOSSLESS compression. Lossy compression though gives more compression compared to lossless compression; the accuracy in retrievation is less in case of lossy compression as compared to lossless compression. JPEG, JPEG2000 image compression system follows huffman coding for image compression. JPEG 2000 coding system use wavelet transform, which decompose the image into different levels, where the coefficient in each sub band are uncorrelated from coefficient of other sub bands. Embedded Zero tree wavelet (EZW) coding exploits the multi-resolution properties of the wavelet transform to give a computationally simple algorithm with better performance compared to existing wavelet transforms. For further improvement of compression applications other coding methods were recently been suggested. An ANN base approach is one such method. Artificial Neural Network has been applied to many problems in image processing and has demonstrated their superiority over classical methods when dealing with noisy or incomplete data for image compression applications. The performance analysis of different images is proposed with an analysis of EZW coding system with Error Backpropagation algorithm. The implementation and analysis shows approximately 30% more accuracy in retrieved image compare to the existing EZW coding system.

Inclusion of Enterococcus Faecalis and Enterococcus Faecium to UF White Cheese

Lighvan cheese is basically made from sheep milk in the area of Sahand mountainside which is located in the North West of Iran. The main objective of this study was to investigate the effect of enterococci isolated from traditional Lighvan cheese on the quality of Iranian UF white during ripening. The experimental design was split plot based on randomized complete blocks, main plots were four types of starters and subplots were different ripening durations. Addition of Enterococcus spp. did not significantly (P

Effect of Flowrate and Coolant Temperature on the Efficiency of Progressive Freeze Concentration on Simulated Wastewater

Freeze concentration freezes or crystallises the water molecules out as ice crystals and leaves behind a highly concentrated solution. In conventional suspension freeze concentration where ice crystals formed as a suspension in the mother liquor, separation of ice is difficult. The size of the ice crystals is still very limited which will require usage of scraped surface heat exchangers, which is very expensive and accounted for approximately 30% of the capital cost. This research is conducted using a newer method of freeze concentration, which is progressive freeze concentration. Ice crystals were formed as a layer on the designed heat exchanger surface. In this particular research, a helical structured copper crystallisation chamber was designed and fabricated. The effect of two operating conditions on the performance of the newly designed crystallisation chamber was investigated, which are circulation flowrate and coolant temperature. The performance of the design was evaluated by the effective partition constant, K, calculated from the volume and concentration of the solid and liquid phase. The system was also monitored by a data acquisition tool in order to see the temperature profile throughout the process. On completing the experimental work, it was found that higher flowrate resulted in a lower K, which translated into high efficiency. The efficiency is the highest at 1000 ml/min. It was also found that the process gives the highest efficiency at a coolant temperature of -6 °C.