Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map

Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.

A New Composition Method of Admissible Support Vector Kernel Based on Reproducing Kernel

Kernel function, which allows the formulation of nonlinear variants of any algorithm that can be cast in terms of dot products, makes the Support Vector Machines (SVM) have been successfully applied in many fields, e.g. classification and regression. The importance of kernel has motivated many studies on its composition. It-s well-known that reproducing kernel (R.K) is a useful kernel function which possesses many properties, e.g. positive definiteness, reproducing property and composing complex R.K by simple operation. There are two popular ways to compute the R.K with explicit form. One is to construct and solve a specific differential equation with boundary value whose handicap is incapable of obtaining a unified form of R.K. The other is using a piecewise integral of the Green function associated with a differential operator L. The latter benefits the computation of a R.K with a unified explicit form and theoretical analysis, whereas there are relatively later studies and fewer practical computations. In this paper, a new algorithm for computing a R.K is presented. It can obtain the unified explicit form of R.K in general reproducing kernel Hilbert space. It avoids constructing and solving the complex differential equations manually and benefits an automatic, flexible and rigorous computation for more general RKHS. In order to validate that the R.K computed by the algorithm can be used in SVM well, some illustrative examples and a comparison between R.K and Gaussian kernel (RBF) in support vector regression are presented. The result shows that the performance of R.K is close or slightly superior to that of RBF.

ROI Based Embedded Watermarking of Medical Images for Secured Communication in Telemedicine

Medical images require special safety and confidentiality because critical judgment is done on the information provided by medical images. Transmission of medical image via internet or mobile phones demands strong security and copyright protection in telemedicine applications. Here, highly secured and robust watermarking technique is proposed for transmission of image data via internet and mobile phones. The Region of Interest (ROI) and Non Region of Interest (RONI) of medical image are separated. Only RONI is used for watermark embedding. This technique results in exact recovery of watermark with standard medical database images of size 512x512, giving 'correlation factor' equals to 1. The correlation factor for different attacks like noise addition, filtering, rotation and compression ranges from 0.90 to 0.95. The PSNR with weighting factor 0.02 is up to 48.53 dBs. The presented scheme is non blind and embeds hospital logo of 64x64 size.

Public R and D Risk and Risk Management Policy

R&D risk management has been suggested as one of the management approaches for accomplishing the goals of public R&D investment. The investment in basic science and core technology development is the essential roles of government for securing the social base needed for continuous economic growth. And, it is also an important role of the science and technology policy sectors to generate a positive environment in which the outcomes of public R&D can be diffused in a stable fashion by controlling the uncertainties and risk factors in advance that may arise during the application of such achievements to society and industry. Various policies have already been implemented to manage uncertainties and variables that may have negative impact on accomplishing public R& investment goals. But we may derive new policy measures for complementing the existing policies and for exploring progress direction by analyzing them in a policy package from the viewpoint of R&D risk management.

Multimedia Games for Elementary/Primary School Education and Entertainment

Computers are increasingly being used as educational tools in elementary/primary schools worldwide. A specific application of such computer use, is that of multimedia games, where the aim is to combine pedagogy and entertainment. This study reports on a case-study whereby an educational multimedia game has been developed for use by elementary school children. The stages of the application-s design, implementation and evaluation are presented. Strengths of the game are identified and discussed, and its weaknesses are identified, allowing for suggestions for future redesigns. The results show that the use of games can engage children in the learning process for longer periods of time with the added benefit of the entertainment factor.

A Relationship between Two Stabilizing Controllers and Its Application to Two-Stage Compensator Design without Coprime Factorizability – Single-Input Single-Output Case –

In this paper, we first show a relationship between two stabilizing controllers, which presents an extended feedback system using two stabilizing controllers. Then, we apply this relationship to the two-stage compensator design. In this paper, we consider singleinput single-output plants. On the other hand, we do not assume the coprime factorizability of the model. Thus, the results of this paper are based on the factorization approach only, so that they can be applied to numerous linear systems.

Interethnic and Interconfessional Agreements are Major Factors of the Political Stability in the Republic of Kazakhstan

In the article the historical formation of interethnic and interconfessional agreement policy in Kazakhstan and their developing features at present time will be analyzed. The successfully pursued by Kazakhstan at the present in the direction of ethnic and confessional policy is regarded as a major factor in promoting stability for the country.

Economic Factors Affecting Rice Export of Thailand

The purpose of this study was primarily assessing how important economic factors namely: The Thai export price of white rice, the exchange rate, and the world rice consumption affect the overall Thai white rice export, using historical data during the period 1989-2013 from the Thai Rice Exporters Association, and Food and Agricultural Organization of the United Nations. The co-integration method, regression analysis, and error correction model were applied to investigate the econometric model. The findings indicated that in the long-run, the world rice consumption, the exchange rate, and the Thai export price of white rice were the important factors affecting the export quantity of Thai white rice respectively, as indicated by their significant coefficients. Meanwhile, the rice export price was an important factor affecting the export quantity of Thai white rice in the short-run. This information is useful in the business, export opportunities, price competitiveness, and policymaker in Thailand.

A New Framework and a Model for Product Development with an Application in the Telecommunications Services Sector

This paper argues that a product development exercise involves in addition to the conventional stages, several decisions regarding other aspects. These aspects should be addressed simultaneously in order to develop a product that responds to the customer needs and that helps realize objectives of the stakeholders in terms of profitability, market share and the like. We present a framework that encompasses these different development dimensions. The framework shows that a product development methodology such as the Quality Function Deployment (QFD) is the basic tool which allows definition of the target specifications of a new product. Creativity is the first dimension that enables the development exercise to live and end successfully. A number of group processes need to be followed by the development team in order to ensure enough creativity and innovation. Secondly, packaging is considered to be an important extension of the product. Branding strategies, quality and standardization requirements, identification technologies, design technologies, production technologies and costing and pricing are also integral parts to the development exercise. These dimensions constitute the proposed framework. The paper also presents a mathematical model used to calculate the design targets based on the target costing principle. The framework is used to study a case of a new product development in the telecommunications services sector.

A Supervised Text-Independent Speaker Recognition Approach

We provide a supervised speech-independent voice recognition technique in this paper. In the feature extraction stage we propose a mel-cepstral based approach. Our feature vector classification method uses a special nonlinear metric, derived from the Hausdorff distance for sets, and a minimum mean distance classifier.

Matrix Based Synthesis of EXOR dominated Combinational Logic for Low Power

This paper discusses a new, systematic approach to the synthesis of a NP-hard class of non-regenerative Boolean networks, described by FON[FOFF]={mi}[{Mi}], where for every mj[Mj]∈{mi}[{Mi}], there exists another mk[Mk]∈{mi}[{Mi}], such that their Hamming distance HD(mj, mk)=HD(Mj, Mk)=O(n), (where 'n' represents the number of distinct primary inputs). The method automatically ensures exact minimization for certain important selfdual functions with 2n-1 points in its one-set. The elements meant for grouping are determined from a newly proposed weighted incidence matrix. Then the binary value corresponding to the candidate pair is correlated with the proposed binary value matrix to enable direct synthesis. We recommend algebraic factorization operations as a post processing step to enable reduction in literal count. The algorithm can be implemented in any high level language and achieves best cost optimization for the problem dealt with, irrespective of the number of inputs. For other cases, the method is iterated to subsequently reduce it to a problem of O(n-1), O(n-2),.... and then solved. In addition, it leads to optimal results for problems exhibiting higher degree of adjacency, with a different interpretation of the heuristic, and the results are comparable with other methods. In terms of literal cost, at the technology independent stage, the circuits synthesized using our algorithm enabled net savings over AOI (AND-OR-Invert) logic, AND-EXOR logic (EXOR Sum-of- Products or ESOP forms) and AND-OR-EXOR logic by 45.57%, 41.78% and 41.78% respectively for the various problems. Circuit level simulations were performed for a wide variety of case studies at 3.3V and 2.5V supply to validate the performance of the proposed method and the quality of the resulting synthesized circuits at two different voltage corners. Power estimation was carried out for a 0.35micron TSMC CMOS process technology. In comparison with AOI logic, the proposed method enabled mean savings in power by 42.46%. With respect to AND-EXOR logic, the proposed method yielded power savings to the tune of 31.88%, while in comparison with AND-OR-EXOR level networks; average power savings of 33.23% was obtained.

Isobaric Vapor-Liquid Equilibrium Data for Binary Mixture of 2-Methyltetrahydrofuran and Cumene

Isobaric vapor-liquid equilibrium measurements are reported for binary mixture of 2-Methyltetrahydrofuran and Cumene at 97.3 kPa. The data were obtained using a vapor recirculating type (modified Othmer's) equilibrium still. The mixture shows slight negative deviation from ideality. The system does not form an azeotrope. The experimental data obtained in this study are thermodynamically consistent according to the Herington test. The activity coefficients have been satisfactorily correlated by means of the Margules, and NRTL equations. Excess Gibbs free energy has been calculated from the experimental data. The values of activity coefficients have also been obtained by the UNIFAC group contribution method.

Speed Regulation of a Small BLDC Motor Using Genetic-Based Proportional Control

This paper presents the speed regulation scheme of a small brushless dc motor (BLDC motor) with trapezoidal back-emf consideration. The proposed control strategy uses the proportional controller in which the proportional gain, kp, is appropriately adjusted by using genetic algorithms. As a result, the proportional control can perform well in order to compensate the BLDC motor with load disturbance. This confirms that the proposed speed regulation scheme gives satisfactory results.

Problems of Innovative Economy: Forming of«Innovative Society» And Innovative Receptivity

Today many countries have the ambitious purposes of long-term and continuous development: constant growth of competitiveness, maintenance of a high standard of living of the population, leadership in the world market. One of the best possible ways of achievement of these purposes is a transition of the countries to innovative economy. The paper presents the analyses of problems of forming of innovative receptivity to innovations and creation of «innovative society». Creation of an innovative culture in a society and increase of the level of prestige of innovative activity are the best ways of developing of innovative processes. The base of the analysis is a comparing of Russia and different developed countries according to the level of some indictors of innovative activity.1

Development a New Model of EEVC/WG17 Lower Legform for Pedestrian Safety

Development, calibration and validation of a threedimensional model of the Legform impactor for pedestrian crash with bumper are presented. Lower limb injury is becoming an increasingly important concern in vehicle safety for both occupants and pedestrians. In order to prevent lower extremity injuries to a pedestrian when struck by a car, it is important to elucidate the loadings from car front structures on the lower extremities and the injury mechanism caused by these loadings. An impact test procedure with a legform addressing lower limb injuries in car pedestrian accidents has been proposed by EEVC/WG17. In this study a modified legform impactor is introduced and validated against EEVC/WG17 criteria. The finite element model of this legform is developed using LS-DYNA software. Total mass of legform impactor is 13.4 kg.Technical specifications including the mass and location of the center of gravity and moment of inertia about a horizontal axis through the respective centre of gravity in femur and tibia are determined. The obtained results of legform impactor static and dynamic tests are as specified in the EEVC/WG17.

Removal of Heavy Metals from Rainwater in Batch Reactors with Sulphate Reducing Bacteria (SRB)

The main objective of this research was to investigate the biosorption capacity for biofilms of sulphate reducing bacteria (SRB) to remove heavy metals, such as Zn, Pb and Cd from rainwater using laboratory-scale reactors containing mixed support media. Evidence showed that biosorption had contributed to removal of heavy metals including Zn, Pb and Cd in presence of SRB and SRB were also found in the aqueous samples from reactors. However, the SRB and specific families (Desulfobacteriaceae and Desulfovibrionaceae) were found mainly in the biomass samples taken from all reactors at the end of the experiment. EDX-analysis of reactor solids at end of experiment showed that heavy metals Zn, Pb and Cd had also accumulated in these precipitates.

A Methodological Approach for Detecting Burst Noise in the Time Domain

The burst noise is a kind of noises that are destructive and frequently found in semiconductor devices and ICs, yet detecting and removing the noise has proved challenging for IC designers or users. According to the properties of burst noise, a methodological approach is presented (proposed) in the paper, by which the burst noise can be analysed and detected in time domain. In this paper, principles and properties of burst noise are expounded first, Afterwards, feasibility (viable) of burst noise detection by means of wavelet transform in the time domain is corroborated in the paper, and the multi-resolution characters of Gaussian noise, burst noise and blurred burst noise are discussed in details by computer emulation. Furthermore, the practical method to decide parameters of wavelet transform is acquired through a great deal of experiment and data statistics. The methodology may yield an expectation in a wide variety of applications.

Market and Innovation Orientation: A Typology of Public Housing Companies in Sweden

The purpose of this paper is to develop a typology based on market orientation (MO) and innovation orientation (IO), and to illustrate to what extent housing companies in Sweden fit within this framework. A qualitative study on 11 public housing companies in the central part of Sweden has been conducted by the help of open and semi-structured questions for data collection. Four public housing company types- i.e. reactive prospector, proactive prospector, reactive defender and proactive defender have been identified by the combination of MO-IO dimensions. Future research can include other dimensions like entrepreneurship and network to observe how it particularly affects MO. An empirical study can compare public and private housing companies on the basis of MO and IO dimensions. One major contribution of the paper is the proposition of typology which can be used to describe public housing companies and deciding their future course of actions.

FEA for Teeth Preparations Marginal Geometry

Knowledge of factors, which influence stress and its distribution, is of key importance to the successful production of durable restorations. One of this is the marginal geometry. The objective of this study was to evaluate, by finite element analysis (FEA), the influence of different marginal designs on the stress distribution in teeth prepared for cast metal crowns. Five margin designs were taken into consideration: shoulderless, chamfer, shoulder, sloped shoulder and shoulder with bevel. For each kind of preparation three dimensional finite element analyses were initiated. Maximal equivalent stresses were calculated and stress patterns were represented in order to compare the marginal designs. Within the limitation of this study, the shoulder and beveled shoulder margin preparations of the teeth are preferred for cast metal crowns from biomechanical point of view.

Acceleration Analysis of a Rotating Body

The velocity of a moving point in a general path is the vector quantity, which has both magnitude and direction. The magnitude or the direction of the velocity vector can change over time as a result of acceleration that the time rate of velocity changes. Acceleration analysis is important because inertial forces and inertial torques are proportional to rectilinear and angular accelerations accordingly. The loads must be determined in advance to ensure that a machine is adequately designed to handle these dynamic loads. For planar motion, the vector direction of acceleration is commonly separated into two elements: tangential and centripetal or radial components of a point on a rotating body. All textbooks in physics, kinematics and dynamics of machinery consider the magnitude of a radial acceleration at condition when a point rotates with a constant angular velocity and it means without acceleration. The magnitude of the tangential acceleration considered on a basis of acceleration for a rotating point. Such condition of presentation of magnitudes for two components of acceleration logically and mathematically is not correct and may cause further confusion in calculation. This paper presents new analytical expressions of the radial and absolute accelerations of a rotating point with acceleration and covers the gap in theoretical study of acceleration analysis.