Design of Nonlinear Robust Control in a Class of Structurally Stable Functions

An approach of design of stable of control systems with ultimately wide ranges of uncertainly disturbed parameters is offered. The method relies on using of nonlinear structurally stable functions from catastrophe theory as controllers. Theoretical part presents an analysis of designed nonlinear second-order control systems. As more important the integrators in series, canonical controllable form and Jordan forms are considered. The analysis resumes that due to added controllers systems become stable and insensitive to any disturbance of parameters. Experimental part presents MATLAB simulation of design of control systems of epidemic spread, aircrafts angular motion and submarine depth. The results of simulation confirm the efficiency of offered method of design. KeywordsCatastrophes, robust control, simulation, uncertain parameters.

Target and Kaizen Costing

increased competition and increased costs of designing made it important for the firms to identify the right products and the right methods for manufacturing the products. Firms should focus on customers and identify customer demands directly to design the right products. Several management methods and techniques that are currently available improve one or more functions or processes in an industry and do not take the complete product life cycle into consideration. On the other hand target costing is a method / philosophy that takes financial, manufacturing and customer aspects into consideration during designing phase and helps firms in making product design decisions to increase the profit / value of the company. It uses various techniques to identify customer demands, to decrease costs of manufacturing and finally to achieve strategic goals. Target Costing forms an integral part of total product design / redesign based on strategic plans.

Performance Evaluation of Qos Parameters in Cognitive Radio Using Genetic Algorithm

The efficient use of available licensed spectrum is becoming more and more critical with increasing demand and usage of the radio spectrum. This paper shows how the use of spectrum as well as dynamic spectrum management can be effectively managed and spectrum allocation schemes in the wireless communication systems be implemented and used, in future. This paper would be an attempt towards better utilization of the spectrum. This research will focus on the decision-making process mainly, with an assumption that the radio environment has already been sensed and the QoS requirements for the application have been specified either by the sensed radio environment or by the secondary user itself. We identify and study the characteristic parameters of Cognitive Radio and use Genetic Algorithm for spectrum allocation. Performance evaluation is done using MATLAB toolboxes.

A New Weighted LDA Method in Comparison to Some Versions of LDA

Linear Discrimination Analysis (LDA) is a linear solution for classification of two classes. In this paper, we propose a variant LDA method for multi-class problem which redefines the between class and within class scatter matrices by incorporating a weight function into each of them. The aim is to separate classes as much as possible in a situation that one class is well separated from other classes, incidentally, that class must have a little influence on classification. It has been suggested to alleviate influence of classes that are well separated by adding a weight into between class scatter matrix and within class scatter matrix. To obtain a simple and effective weight function, ordinary LDA between every two classes has been used in order to find Fisher discrimination value and passed it as an input into two weight functions and redefined between class and within class scatter matrices. Experimental results showed that our new LDA method improved classification rate, on glass, iris and wine datasets, in comparison to different versions of LDA.

A Study on the Design Elements of Sidewalk in Urban Commercial District

This study was to search for the desirable direction of the sidewalk planning in Korea by establishing the concepts of walking and pedestrian space, and analyzing the advanced precedents in and out of country. Also, based on the precedent studies and relevant laws, regulations, and systems, it aimed for the following sequential process: firstly, to derive design elements from the functions and characteristics of sidewalk and cluster the similar elements by each characteristics, sampling representative characteristics and making them hierarchical; then, to analyze their significances via the first questionnaire survey, and the relative weights and priorities of each elements via the Analytic Hierarchy Process(AHP); finally, based on the analysis result, to establish the frame of suggesting the direction of policy to improve the pedestrian environment of sidewalk in urban commercial district for the future planning and design of pedestrian space.

Evaluation of Urban Development Proposals An ANP Approach

In this paper a new approach to prioritize urban planning projects in an efficient and reliable way is presented. It is based on environmental pressure indices and multicriteria decision methods. The paper introduces a rigorous method with acceptable complexity of rank ordering urban development proposals according to their environmental pressure. The technique combines the use of Environmental Pressure Indicators, the aggregation of indicators in an Environmental Pressure Index by means of the Analytic Network Process method and interpreting the information obtained from the experts during the decision-making process. The ANP method allows the aggregation of the experts- judgments on each of the indicators into one Environmental Pressure Index. In addition, ANP is based on utility ratio functions which are the most appropriate for the analysis of uncertain data, like experts- estimations. Finally, unlike the other multicriteria techniques, ANP allows the decision problem to be modelled using the relationships among dependent criteria. The method has been applied to the proposal for urban development of La Carlota airport in Caracas (Venezuela). The Venezuelan Government would like to see a recreational project develop on the abandoned area and mean a significant improvement for the capital. There are currently three options on their table which are currently under evaluation. They include a Health Club, a Residential area and a Theme Park. The participating experts coincided in the appreciation that the method proposed in this paper is useful and an improvement from traditional techniques such as environmental impact studies, lifecycle analysis, etc. They find the results obtained coherent, the process seems sufficiently rigorous and precise, and the use of resources is significantly less than in other methods.

Similarity Measure Functions for Strategy-Based Biometrics

Functioning of a biometric system in large part depends on the performance of the similarity measure function. Frequently a generalized similarity distance measure function such as Euclidian distance or Mahalanobis distance is applied to the task of matching biometric feature vectors. However, often accuracy of a biometric system can be greatly improved by designing a customized matching algorithm optimized for a particular biometric application. In this paper we propose a tailored similarity measure function for behavioral biometric systems based on the expert knowledge of the feature level data in the domain. We compare performance of a proposed matching algorithm to that of other well known similarity distance functions and demonstrate its superiority with respect to the chosen domain.

BDD Package Based on Boolean NOR Operation

Binary Decision Diagrams (BDDs) are useful data structures for symbolic Boolean manipulations. BDDs are used in many tasks in VLSI/CAD, such as equivalence checking, property checking, logic synthesis, and false paths. In this paper we describe a new approach for the realization of a BDD package. To perform manipulations of Boolean functions, the proposed approach does not depend on the recursive synthesis operation of the IF-Then-Else (ITE). Instead of using the ITE operation, the basic synthesis algorithm is done using Boolean NOR operation.

An Integrated Framework for the Realtime Investigation of State Space Exploration

The objective of this paper is the introduction to a unified optimization framework for research and education. The OPTILIB framework implements different general purpose algorithms for combinatorial optimization and minimum search on standard continuous test functions. The preferences of this library are the straightforward integration of new optimization algorithms and problems as well as the visualization of the optimization process of different methods exploring the search space exclusively or for the real time visualization of different methods in parallel. Further the usage of several implemented methods is presented on the basis of two use cases, where the focus is especially on the algorithm visualization. First it is demonstrated how different methods can be compared conveniently using OPTILIB on the example of different iterative improvement schemes for the TRAVELING SALESMAN PROBLEM. A second study emphasizes how the framework can be used to find global minima in the continuous domain.

Structural Characterization of Piscine Globin Superfamily Proteins

Globin superfamily proteins including myoglobin and hemoglobin, have welcome new members recently, namely, cytoglobin, neuroglobin and globin X, though their physiological functions are still to be addressed. Fish are the excellent models for the study of these globins, but their characteristics have not yet been discussed to date. In the present study, attempts have been made to characterize their structural uniqueness by making use of proteomics approach. This is the first comparative study on the characterization of globin superfamily proteins from fish.

Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method

An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.

Changes of Poultry Meat Chemical Composition, in Relationship with Lighting Schedule

The paper is included within the framework of a complex research program, which was initiated from the hypothesis arguing on the existence of a correlation between pineal indolic and peptide hormones and the somatic development rhythm, including thus the epithalamium-epiphysis complex involvement. At birds, pineal gland contains a circadian oscillator, playing a main role in the temporal organization of the cerebral functions. The secretion of pineal indolic hormones is characterized by a high endogenous rhythmic alternation, modulated by the light/darkness (L/D) succession and by temperature as well. The research has been carried out using 100 chicken broilers - “Ross" commercial hybrid, randomly allocated in two experimental batches: Lc batch, reared under a 12L/12D lighting schedule and Lexp batch, which was photic pinealectomised through continuous exposition to light (150 lux, 24 hours, 56 days). Chemical and physical features of the meat issued from breast fillet and thighs muscles have been studied, determining the dry matter, proteins, fat, collagen, salt content and pH value, as well. Besides the variations of meat chemical composition in relation with lighting schedule, other parameters have been studied: live weight dynamics, feed intake and somatic development degree. The achieved results became significant since chickens have 7 days of age, some variations of the studied parameters being registered, revealing that the pineal gland physiologic activity, in relation with the lighting schedule, could be interpreted through the monitoring of the somatic development technological parameters, usually studied within the chicken broilers rearing aviculture practice.

Adaptive Integral Backstepping Motion Control for Inverted Pendulum

The adaptive backstepping controller for inverted pendulum is designed by using the general motion control model. Backstepping is a novel nonlinear control technique based on the Lyapunov design approach, used when higher derivatives of parameter estimation appear. For easy parameter adaptation, the mathematical model of the inverted pendulum converted into the motion control model. This conversion is performed by taking functions of unknown parameters and dynamics of the system. By using motion control model equations, inverted pendulum is simulated without any information about not only parameters but also measurable dynamics. Also these results are compare with the adaptive backstepping controller which extended with integral action that given from [1].

Proteins Length and their Phenotypic Potential

Mendelian Disease Genes represent a collection of single points of failure for the various systems they constitute. Such genes have been shown, on average, to encode longer proteins than 'non-disease' proteins. Existing models suggest that this results from the increased likeli-hood of longer genes undergoing mutations. Here, we show that in saturated mutagenesis experiments performed on model organisms, where the likelihood of each gene mutating is one, a similar relationship between length and the probability of a gene being lethal was observed. We thus suggest an extended model demonstrating that the likelihood of a mutated gene to produce a severe phenotype is length-dependent. Using the occurrence of conserved domains, we bring evidence that this dependency results from a correlation between protein length and the number of functions it performs. We propose that protein length thus serves as a proxy for protein cardinality in different networks required for the organism's survival and well-being. We use this example to argue that the collection of Mendelian Disease Genes can, and should, be used to study the rules governing systems vulnerability in living organisms.

Weight Functions for Signal Reconstruction Based On Level Crossings

Although the level crossing concept has been the subject of intensive investigation over the last few years, certain problems of great interest remain unsolved. One of these concern is distribution of threshold levels. This paper presents a new threshold level allocation schemes for level crossing based on nonuniform sampling. Intuitively, it is more reasonable if the information rich regions of the signal are sampled finer and those with sparse information are sampled coarser. To achieve this objective, we propose non-linear quantization functions which dynamically assign the number of quantization levels depending on the importance of the given amplitude range. Two new approaches to determine the importance of the given amplitude segment are presented. The proposed methods are based on exponential and logarithmic functions. Various aspects of proposed techniques are discussed and experimentally validated. Its efficacy is investigated by comparison with uniform sampling.

The Impact of Colours on Online Marketing Communications

Colour choice has become a common strategy and correlates highly with marketing. Three broad functions can be identified for colour in a building context especially applied in marketing communications, which are its role as an important parameter in illumination designs, its capacity to influence the visual appearance of a building in a predictable manner and as an aesthetic function. The review of literatures shows that colour has an impact on online marketing communications, and relations between colour, web and marketing communications.

Fuzzy Hyperbolization Image Enhancement and Artificial Neural Network for Anomaly Detection

A prototype of an anomaly detection system was developed to automate process of recognizing an anomaly of roentgen image by utilizing fuzzy histogram hyperbolization image enhancement and back propagation artificial neural network. The system consists of image acquisition, pre-processor, feature extractor, response selector and output. Fuzzy Histogram Hyperbolization is chosen to improve the quality of the roentgen image. The fuzzy histogram hyperbolization steps consist of fuzzyfication, modification of values of membership functions and defuzzyfication. Image features are extracted after the the quality of the image is improved. The extracted image features are input to the artificial neural network for detecting anomaly. The number of nodes in the proposed ANN layers was made small. Experimental results indicate that the fuzzy histogram hyperbolization method can be used to improve the quality of the image. The system is capable to detect the anomaly in the roentgen image.

Emission Constrained Hydrothermal Scheduling Algorithm

This paper presents an efficient emission constrained hydrothermal scheduling algorithm that deals with nonlinear functions such as the water discharge characteristics, thermal cost, and transmission loss. It is then incorporated into the hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

Design and Implementation of Optimal Winner Determination Algorithm in Combinatorial e- Auctions

The one of best robust search technique on large scale search area is heuristic and meta heuristic approaches. Especially in issue that the exploitation of combinatorial status in the large scale search area prevents the solution of the problem via classical calculating methods, so such problems is NP-complete. in this research, the problem of winner determination in combinatorial auctions have been formulated and by assessing older heuristic functions, we solve the problem by using of genetic algorithm and would show that this new method would result in better performance in comparison to other heuristic function such as simulated annealing greedy approach.

A MATLAB Simulink Library for Transient Flow Simulation of Gas Networks

An efficient transient flow simulation for gas pipelines and networks is presented. The proposed transient flow simulation is based on the transfer function models and MATLABSimulink. The equivalent transfer functions of the nonlinear governing equations are derived for different types of the boundary conditions. Next, a MATLAB-Simulink library is developed and proposed considering any boundary condition type. To verify the accuracy and the computational efficiency of the proposed simulation, the results obtained are compared with those of the conventional finite difference schemes (such as TVD, method of lines, and other finite difference implicit and explicit schemes). The effects of the flow inertia and the pipeline inclination are incorporated in this simulation. It is shown that the proposed simulation has a sufficient accuracy and it is computationally more efficient than the other methods.