Optimal Controllers with Actuator Saturation for Nonlinear Structures

Since the actuator capacity is limited, in the real application of active control systems under sever earthquakes it is conceivable that the actuators saturate, hence the actuator saturation should be considered as a constraint in design of optimal controllers. In this paper optimal design of active controllers for nonlinear structures by considering actuator saturation, has been studied. The proposed method for designing optimal controllers is based on defining an optimization problem which the objective has been to minimize the maximum displacement of structure when a limited capacity for actuator has been used. To this end a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of prestressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used. To achieve the best results, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been optimized by the Distributed Genetic Algorithm (DGA). Results show the effectiveness of the proposed method in considering actuator saturation. Also based on the numerical simulations it can be concluded that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers which consider the actuator saturation.

The Impact of Process Parameters on the Output Characteristics of an LDMOS Device

In this paper, we have examined the effect of process parameter variation on the electrical characteristics of an LDMOS device. The rate of change in the electrical parameters such as cut off frequency, breakdown voltage and drain saturation current as a function of the process parameters is investigated

Occupants- Behavior and Spatial Implications of Riverfront Residential in Yogyakarta, Indonesia

The urbanization phenomenon in Yogyakarta Special Province, Indonesia, encouraged people move to the city for getting jobs in the informal sectors. They live in some temporary houses in the three main riverbanks: Gadjahwong, Code, and Winongo. Triggered by its independent status they use it as the space for accommodating domestic, social and economy activities because of the non standardized room size of their houses, where are recognized as the environmental hazards. This recognition makes the ambivalent perception when was related to the twelfth point of the philosophy of community development concept: the empowering individuals and communities. Its spatial implication have actually described the territory and the place making phenomena. By analyzing some data collected the author-s fundamental research funded by The General Directorate of Higher Education of Indonesia, this paper will discuss how do the spatial implications of the occupants- behavior and the numerous perceptions of those phenomena.

An Unstructured Finite-volume Technique for Shallow-water Flows with Wetting and Drying Fronts

An unstructured finite volume numerical model is presented here for simulating shallow-water flows with wetting and drying fronts. The model is based on the Green-s theorem in combination with Chorin-s projection method. A 2nd-order upwind scheme coupled with a Least Square technique is used to handle convection terms. An Wetting and drying treatment is used in the present model to ensures the total mass conservation. To test it-s capacity and reliability, the present model is used to solve the Parabolic Bowl problem. We compare our numerical solutions with the corresponding analytical and existing standard numerical results. Excellent agreements are found in all the cases.

The Impact of Local Decision-Making in Regional Development Schemes on the Achievement of Efficiency in EU Funds

European Union candidate status provides a strong motivation for decision-making in the candidate countries in shaping the regional development policy where there is an envisioned transfer of power from center to the periphery. The process of Europeanization anticipates the candidate countries configure their regional institutional templates in the context of the requirements of the European Union policies and introduces new instruments of incentive framework of enlargement to be employed in regional development schemes. It is observed that the contribution of the local actors to the decision making in the design of the allocation architectures enhances the efficiency of the funds and increases the positive effects of the projects funded under the regional development objectives. This study aims at exploring the performances of the three regional development grant schemes in Turkey, established and allocated under the pre-accession process with a special emphasis given to the roles of the national and local actors in decision-making for regional development. Efficiency analyses have been conducted using the DEA methodology which has proved to be a superior method in comparative efficiency and benchmarking measurements. The findings of this study as parallel to similar international studies, provides that the participation of the local actors to the decision-making in funding contributes both to the quality and the efficiency of the projects funded under the EU schemes.

Combination of Different Classifiers for Cardiac Arrhythmia Recognition

This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.

Orbit Propagator and Geomagnetic Field Estimator for NanoSatellite: The ICUBE Mission

This research contribution is drafted to present the orbit design, orbit propagator and geomagnetic field estimator for the nanosatellites specifically for the upcoming CUBESAT, ICUBE-1 of the Institute of Space Technology (IST), Islamabad, Pakistan. The ICUBE mission is designed for the low earth orbit at the approximate height of 700KM. The presented research endeavor designs the Keplarian elements for ICUBE-1 orbit while incorporating the mission requirements and propagates the orbit using J2 perturbations, The attitude determination system of the ICUBE-1 consists of attitude determination sensors like magnetometer and sun sensor. The Geomagnetic field estimator is developed according to the model of International Geomagnetic Reference Field (IGRF) for comparing the magnetic field measurements by the magnetometer for attitude determination. The output of the propagator namely the Keplarians position and velocity vectors and the magnetic field vectors are compared and verified with the same scenario generated in the  Satellite Tool Kit (STK).

Environmental Issues Related to Nuclear Desalination

The paper presents an overview of environmental issues that may be expected with nuclear desalination. The analysis of coupling nuclear power with desalination plants indicates that adverse marine impacts can be mitigated with alternative intake designs or cooling systems. The atmospheric impact of desalination may be greatly reduced through the coupling with nuclear power, while maximizing the socio-economic benefit for both processes. The potential for tritium contamination of the desalinated water was reviewed. Experience with the systems and practices related to the radiological quality of the product water, shows no examples of cross-contamination. Furthermore, the indicators for the public acceptance of nuclear desalination, as one of the most important sustainability aspects of any such large project, show a positive trend. From the data collected, a conclusion is made that nuclear desalination should be supported by decision-makers.

The Impact of Subsequent Stock Market Liberalization on the Integration of Stock Markets in ASEAN-4 + South Korea

To strengthen the capital market, there is a need to integrate the capital markets within the region by removing legal or informal restriction, specifically, stock market liberalization. Thus the paper is to investigate the effects of the subsequent stock market liberalization on stock market integration in 4 ASEAN countries (Malaysia, Indonesia, Thailand, Singapore) and Korea from 1997 to 2007. The correlation between stock market liberalization and stock market integration are to be examined by analyzing the stock prices and returns within the region and in comparison with the world MSCI index. Event study method is to be used with windows of ±12 months and T-7 + T. The results show that the subsequent stock market liberalization generally, gives minor positive effects to stock returns, except for one or two countries. The subsequent liberalization also integrates the markets short-run and long-run.

Effect of Pectinase on the Physico-Chemical Properties of Juice from Pawpaw (Carica papaya) Fruits

A procedure for the preparation of clarified Pawpaw Juice was developed. About 750ml Pawpaw pulp was measured into 2 measuring cylinders A & B of capacity 1 litre heated to 400C, cooled to 200C. 30mls pectinase was added into cylinder A, while 30mls distilled water was added into cylinder B. Enzyme treated sample (A) was allowed to digest for 5hours after which it was heated to 900C for 15 minutes to inactivate the enzyme. The heated sample was cooled and with the aid of a mucillin cloth the pulp was filtered to obtain the clarified pawpaw juice. The juice was filled into 100ml plastic bottles, pasteurized at 950C for 45 minutes, cooled and stored at room temperature. The sample treated with 30mls distilled water also underwent the same process. Freshly pasteurized sample was analyzed for specific gravity, titratable acidity, pH, sugars and ascorbic acid. The remaining sample was then stored for 2 weeks and the above analyses repeated. There were differences in the results of the freshly pasteurized samples and stored sample in pH and ascorbic acid levels, also sample treated with pectinase yielded higher volumes of juice than that treated with distilled water.

The Investigation of Green Roof and White Roof Cooling Potential on Single Storey Residential Building in the Malaysian Climate

The phenomenon of global warming or climate change has led to many environmental issues including higher atmospheric temperatures, intense precipitation, increased greenhouse gaseous emissions and increased indoor discomfort. Studies have shown that bringing nature to the roof such as constructing green roof and implementing high-reflective roof may give positive impact in mitigating the effects of global warming and in increasing thermal comfort sensation inside buildings. However, no study has been conducted to compare both types of passive roof treatments in Malaysia in order to increase thermal comfort in buildings. Therefore, this study is conducted to investigate the effect of green roof and white painted roof as passive roof treatment in improving indoor comfort of Malaysian homes. This study uses an experimental approach in which the measurements of temperatures are conducted on the case study building. The measurements of outdoor and indoor environments were conducted on the flat roof with two different types of roof treatment that are green roof and white roof. The measurement of existing black bare roof was also conducted to act as a control for this study.

The Role of Private Equity during Global Crises

The term private equity usually refers to any type of equity investment in an asset in which the equity is not freely tradable on a public stock market. Some researchers believe that private equity contributed to the extent of the crisis and increased the pace of its spread over the world. We do not agree with this. On the other hand, we argue that during the economic recession private equity might become an important source of funds for firms with special needs (e.g. for firms seeking buyout financing, venture capital, expansion capital or distress debt financing). However, over-regulation of private equity in both the European Union and the US can slow down this specific funding channel to the economy and deepen credit crunch during global crises.

Stability Issues on an Implemented All-Pass Filter Circuitry

The so-called all-pass filter circuits are commonly used in the field of signal processing, control and measurement. Being connected to capacitive loads, these circuits tend to loose their stability; therefore the elaborate analysis of their dynamic behavior is necessary. The compensation methods intending to increase the stability of such circuits are discussed in this paper, including the socalled lead-lag compensation technique being treated in detail. For the dynamic modeling, a two-port network model of the all-pass filter is being derived. The results of the model analysis show, that effective lead-lag compensation can be achieved, alone by the optimization of the circuit parameters; therefore the application of additional electric components are not needed to fulfill the stability requirement.

Experimental Studies on Multiphase Flow in Porous Media and Pore Wettability

Multiphase flow transport in porous medium is very common and significant in science and engineering applications. For example, in CO2 Storage and Enhanced Oil Recovery processes, CO2 has to be delivered to the pore spaces in reservoirs and aquifers. CO2 storage and enhance oil recovery are actually displacement processes, in which oil or water is displaced by CO2. This displacement is controlled by pore size, chemical and physical properties of pore surfaces and fluids, and also pore wettability. In this study, a technique was developed to measure the pressure profile for driving gas/liquid to displace water in pores. Through this pressure profile, the impact of pore size on the multiphase flow transport and displacement can be analyzed. The other rig developed can be used to measure the static and dynamic pore wettability and investigate the effects of pore size, surface tension, viscosity and chemical structure of liquids on pore wettability.

Estimation of Broadcast Probability in Wireless Adhoc Networks

Most routing protocols (DSR, AODV etc.) that have been designed for wireless adhoc networks incorporate the broadcasting operation in their route discovery scheme. Probabilistic broadcasting techniques have been developed to optimize the broadcast operation which is otherwise very expensive in terms of the redundancy and the traffic it generates. In this paper we have explored percolation theory to gain a different perspective on probabilistic broadcasting schemes which have been actively researched in the recent years. This theory has helped us estimate the value of broadcast probability in a wireless adhoc network as a function of the size of the network. We also show that, operating at those optimal values of broadcast probability there is at least 25-30% reduction in packet regeneration during successful broadcasting.

Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel

The present work compares the performance of three turbulence modeling approach (based on the two-equation k -ε model) in predicting erosive wear in multi-size dense slurry flow through rotating channel. All three turbulence models include rotation modification to the production term in the turbulent kineticenergy equation. The two-phase flow field obtained numerically using Galerkin finite element methodology relates the local flow velocity and concentration to the wear rate via a suitable wear model. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. Results of predicted wear rates using the three turbulence models are compared for a large number of cases spanning such operating parameters as rotation rate, solids concentration, flow rate, particle size distribution and so forth. The root-mean-square error between FE-generated data and the correlation between maximum wear rate and the operating parameters is found less than 2.5% for all the three models.

Employee Loyalty and Telecommuting

Telecommuting has become an increasingly popular work arrangement. However, little research has examined the impact of telecommuting on the relationship between employees and the organization. This study aims to shed light on this aspect by comparing the loyalty of telecommuters and non telecommuters as it can be viewed from three angles: organizational loyalty, peer loyalty, and professional loyalty. Furthermore, this paper will explore the dynamics among employee loyalty, productivity, and job satisfaction. Whereas previous studies had looked on employees that are not fully telecommuting, the current study concentrates on employees that are exclusively working from home.

3D Oil Reservoir Visualisation Using Octree Compression Techniques Utilising Logical Grid Co-Ordinates

Octree compression techniques have been used for several years for compressing large three dimensional data sets into homogeneous regions. This compression technique is ideally suited to datasets which have similar values in clusters. Oil engineers represent reservoirs as a three dimensional grid where hydrocarbons occur naturally in clusters. This research looks at the efficiency of storing these grids using octree compression techniques where grid cells are broken into active and inactive regions. Initial experiments yielded high compression ratios as only active leaf nodes and their ancestor, header nodes are stored as a bitstream to file on disk. Savings in computational time and memory were possible at decompression, as only active leaf nodes are sent to the graphics card eliminating the need of reconstructing the original matrix. This results in a more compact vertex table, which can be loaded into the graphics card quicker and generating shorter refresh delay times.

A Systematic Construction of Instability Bounds in LIS Networks

In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, p)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates p > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.