Improving Multi-storey Building Sensor Network with an External Hub

Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.

A Hybrid Genetic Algorithm for the Sequence Dependent Flow-Shop Scheduling Problem

Flow-shop scheduling problem (FSP) deals with the scheduling of a set of jobs that visit a set of machines in the same order. The FSP is NP-hard, which means that an efficient algorithm for solving the problem to optimality is unavailable. To meet the requirements on time and to minimize the make-span performance of large permutation flow-shop scheduling problems in which there are sequence dependent setup times on each machine, this paper develops one hybrid genetic algorithms (HGA). Proposed HGA apply a modified approach to generate population of initial chromosomes and also use an improved heuristic called the iterated swap procedure to improve initial solutions. Also the author uses three genetic operators to make good new offspring. The results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.

Study of the Vertical Handoff in Heterogeneous Networks and Implement Based On Opnet

In this document we studied more in detail the Performances of the vertical handover in the networks WLAN, WiMAX, UMTS before studying of it the Procedure of Handoff Vertical, the whole buckled by simulations putting forward the performances of the handover in the heterogeneous networks. The goal of Vertical Handover is to carry out several accesses in real-time in the heterogeneous networks. This makes it possible a user to use several networks (such as WLAN UMTS andWiMAX) in parallel, and the system to commutate automatically at another basic station, without disconnecting itself, as if there were no cut and with little loss of data as possible.

Performance Evaluation of a Neural Network based General Purpose Space Vector Modulator

Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.

Authenticated Mobile Device Proxy Service

In the current study we present a system that is capable to deliver proxy based differentiated service. It will help the carrier service node to sell a prepaid service to clients and limit the use to a particular mobile device or devices for a certain time. The system includes software and hardware architecture for a mobile device with moderate computational power, and a secure protocol for communication between it and its carrier service node. On the carrier service node a proxy runs on a centralized server to be capable of implementing cryptographic algorithms, while the mobile device contains a simple embedded processor capable of executing simple algorithms. One prerequisite is needed for the system to run efficiently that is a presence of Global Trusted Verification Authority (GTVA) which is equivalent to certifying authority in IP networks. This system appears to be of great interest for many commercial transactions, business to business electronic and mobile commerce, and military applications.

Optimal SSSC Placement to ATC Enhancing in Power Systems

This paper reviews the optimization available transmission capability (ATC) of power systems using a device of FACTS named SSSC equipped with energy storage devices. So that, emplacement and improvement of parameters of SSSC will be illustrated. Thus, voltage magnitude constraints of network buses, line transient stability constraints and voltage breakdown constraints are considered. To help the calculations, a comprehensive program in DELPHI is provided, which is able to simulate and trace the parameters of SSSC has been installed on a specific line. Furthermore, the provided program is able to compute ATC, TTC and maximum value of their enhancement after using SSSC.

Modelling and Analysis of a Robust Control of Manufacturing Systems: Flow-Quality Approach

This paper proposes a modeling method of the laws controlling manufacturing systems with temporal and non temporal constraints. A methodology of robust control construction generating the margins of passive and active robustness is being elaborated. Indeed, two paramount models are presented in this paper. The first utilizes the P-time Petri Nets which is used to manage the flow type disturbances. The second, the quality model, exploits the Intervals Constrained Petri Nets (ICPN) tool which allows the system to preserve its quality specificities. The redundancy of the robustness of the elementary parameters between passive and active is also used. The final model built allows the correlation of temporal and non temporal criteria by putting two paramount models in interaction. To do so, a set of definitions and theorems are employed and affirmed by applicator examples.

Simulation of Climate Variability for Assessing Impacts on Yield and Genetic Change of Thai Soybean

This study assessed the effects of climate change on Thai soybeans under simulation situations. Our study is focused on temperature variability and effects on growth, yield, and genetic changes in 2 generations of Chiang Mai 60 cultivars. In the experiment, soybeans were exposed to 3 levels of air temperature for 8 h day-1 in an open top chamber for 2 cropping periods. Air temperature levels in each treatment were controlled at 30-33°C (± 2.3) for LT-treatment, 33-36°C ( ± 2.4) for AT-treatment, and 36-40 °C ( ± 3.2) for HT-treatment, respectively. Positive effects of high temperature became obvious at the maturing stage when yield significantly increased in both cropping periods. Results in growth indicated that shoot length at the pre-maturing stage (V3-R3) was more positively affected by high temperature than at the maturing stage. However, the positive effect on growth under high temperature was not found in the 2nd cropping period. Finally, genetic changes were examined in phenotype characteristics by the AFLPs technique. The results showed that the high temperature factor clearly caused genetic change in the soybeans and showed more alteration in the 2nd cropping period.

Real-Time Identification of Media in a Laboratory-Scaled Penetrating Process

In this paper, a neural network technique is applied to real-time classifying media while a projectile is penetrating through them. A laboratory-scaled penetrating setup was built for the experiment. Features used as the network inputs were extracted from the acceleration of penetrator. 6000 set of features from a single penetration with known media and status were used to train the neural network. The trained system was tested on 30 different penetration experiments. The system produced an accuracy of 100% on the training data set. And, their precision could be 99% for the test data from 30 tests.

A Gnutella-based P2P System Using Cross-Layer Design for MANET

It is expected that ubiquitous era will come soon. A ubiquitous environment has features like peer-to-peer and nomadic environments. Such features can be represented by peer-to-peer systems and mobile ad-hoc networks (MANETs). The features of P2P systems and MANETs are similar, appealing for implementing P2P systems in MANET environment. It has been shown that, however, the performance of the P2P systems designed for wired networks do not perform satisfactorily in mobile ad-hoc environment. Subsequently, this paper proposes a method to improve P2P performance using cross-layer design and the goodness of a node as a peer. The proposed method uses routing metric as well as P2P metric to choose favorable peers to connect. It also utilizes proactive approach for distributing peer information. According to the simulation results, the proposed method provides higher query success rate, shorter query response time and less energy consumption by constructing an efficient overlay network.

Computationally Efficient Signal Quality Improvement Method for VoIP System

The voice signal in Voice over Internet protocol (VoIP) system is processed through the best effort policy based IP network, which leads to the network degradations including delay, packet loss jitter. The work in this paper presents the implementation of finite impulse response (FIR) filter for voice quality improvement in the VoIP system through distributed arithmetic (DA) algorithm. The VoIP simulations are conducted with AMR-NB 6.70 kbps and G.729a speech coders at different packet loss rates and the performance of the enhanced VoIP signal is evaluated using the perceptual evaluation of speech quality (PESQ) measurement for narrowband signal. The results show reduction in the computational complexity in the system and significant improvement in the quality of the VoIP voice signal.

Performance Comparison of Single and Multi-Path Routing Protocol in MANET with Selfish Behaviors

Mobile Ad Hoc network is an infrastructure less network which operates with the coordination of each node. Each node believes to help another node, by forwarding its data to/from another node. Unlike a wired network, nodes in an ad hoc network are resource (i.e. battery, bandwidth computational capability and so on) constrained. Such dependability of one node to another and limited resources of nodes can result in non cooperation by any node to accumulate its resources. Such non cooperation is known as selfish behavior. This paper discusses the performance analysis of very well known MANET single-path (i.e. AODV) and multi-path (i.e. AOMDV) routing protocol, in the presence of selfish behaviors. Along with existing selfish behaviors, a new variation is also studied. Extensive simulations were carried out using ns-2 and the study concluded that the multi-path protocol (i.e. AOMDV) with link disjoint configuration outperforms the other two configurations.

The Relations between the Fractal Properties of the River Networks and the River Flow Time Series

All the geophysical phenomena including river networks and flow time series are fractal events inherently and fractal patterns can be investigated through their behaviors. A non-linear system like a river basin can well be analyzed by a non-linear measure such as the fractal analysis. A bilateral study is held on the fractal properties of the river network and the river flow time series. A moving window technique is utilized to scan the fractal properties of them. Results depict both events follow the same strategy regarding to the fractal properties. Both the river network and the time series fractal dimension tend to saturate in a distinct value.

Weaknesses and Strengths Analysis over Wireless Network Security Standards

Several wireless networks security standards have been proposed and widely implemented in both business and home environments in order to protect the network from unauthorized access. However, the implementation of such standards is usually achieved by network administrators without even knowing the standards- weaknesses and strengths. The intention of this paper is to evaluate and analyze the impact over the network-s security due to the implementation of the wireless networks security standards WEP, WPA and WLAN 802.1X.

Simulation Study for Performance Comparison of Routing Protocols in Mobile Adhoc Network

Due to insufficient frequency band and tremendous growth of the mobile users, complex computation is needed for the use of resources. Long distance communication began with the introduction of telegraphs and simple coded pulses, which were used to transmit short messages. Since then numerous advances have rendered reliable transfer of information both easier and quicker. Wireless network refers to any type of computer network that is wireless, and is commonly associated with a telecommunications network whose interconnections between nodes is implemented without the use of wires. Wireless network can be broadly categorized in infrastructure network and infrastructure less network. Infrastructure network is one in which we have a base station to serve the mobile users and in the infrastructure less network is one in which no infrastructure is available to serve the mobile users this kind of networks are also known as mobile Adhoc networks. In this paper we have simulated the result for different scenarios with protocols like AODV and DSR; we simulated the result for throughput, delay and receiving traffic in the given scenario.

A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks

In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.

Loop-free Local Path Repair Strategy for Directed Diffusion

This paper proposes an implementation for the directed diffusion paradigm aids in studying this paradigm-s operations and evaluates its behavior according to this implementation. The directed diffusion is evaluated with respect to the loss percentage, lifetime, end-to-end delay, and throughput. From these evaluations some suggestions and modifications are proposed to improve the directed diffusion behavior according to this implementation with respect to these metrics. The proposed modifications reflect the effect of local path repair by introducing a technique called Loop-free Local Path Repair (LLPR) which improves the directed diffusion behavior especially with respect to packet loss percentage by about 92.69%. Also LLPR improves the throughput and end-to-end delay by about 55.31% and 14.06% respectively, while the lifetime decreases by about 29.79%.

Uniform Overlapped Multi-Carrier PWM for a Six-Level Diode Clamped Inverter

Multi-level voltage source inverters offer several advantages such as; derivation of a refined output voltage with reduced total harmonic distortion (THD), reduction of voltage ratings of the power semiconductor switching devices and also the reduced electro-magnetic-interference problems etc. In this paper, new carrier-overlapped phase-disposition or sub-harmonic sinusoidal pulse width modulation (CO-PD-SPWM) and also the carrieroverlapped phase-disposition space vector modulation (CO-PDSVPWM) schemes for a six-level diode-clamped inverter topology are proposed. The principle of the proposed PWM schemes is similar to the conventional PD-PWM with a little deviation from it in the sense that the triangular carriers are all overlapped. The overlapping of the triangular carriers on one hand results in an increased number of switchings, on the other hand this facilitates an improved spectral performance of the output voltage. It is demonstrated through simulation studies that the six-level diode-clamped inverter with the use of CO-PD-SPWM and CO-PD-SVPWM proposed in this paper is capable of generating multiple levels in its output voltage. The advantages of the proposed PWM schemes can be derived to benefit, especially at lower modulation indices of the inverter and hence this aspect of the proposed PWM schemes can be well exploited in high power applications requiring low speeds of operation of the drive.

Numerical Investigation into Mixing Performance of Electrokinetically-Driven Power-Law Fluids in Microchannel with Patterned Trapezoid Blocks

The study investigates the mixing performance of electrokinetically-driven power-law fluids in a microchannel containing patterned trapezoid blocks. The effects of the geometry parameters of the patterned trapezoid blocks and the flow behavior index in the power-law model on the mixing efficiency within the microchannel are explored. The results show that the mixing efficiency can be improved by increasing the width of the blocks and extending the length of upper surface of the blocks. In addition, the results show that the mixing efficiency increases with an increasing flow behavior index. Furthermore, it is shown that a heterogeneous patterning of the zeta potential on the upper surfaces of the trapezoid blocks prompts the formation of local flow recirculations, and therefore improves the mixing efficiency. Consequently, it is shown that the mixing performance improves with an increasing magnitude of the heterogeneous surface zeta potential.

CMOS-Compatible Silicon Nanoplasmonics for On-Chip Integration

Although silicon photonic devices provide a significantly larger bandwidth and dissipate a substantially less power than the electronic devices, they suffer from a large size due to the fundamental diffraction limit and the weak optical response of Si. A potential solution is to exploit Si plasmonics, which may not only miniaturize the photonic device far beyond the diffraction limit, but also enhance the optical response in Si due to the electromagnetic field confinement. In this paper, we discuss and summarize the recently developed metal-insulator-Si-insulator-metal nanoplasmonic waveguide as well as various passive and active plasmonic components based on this waveguide, including coupler, bend, power splitter, ring resonator, MZI, modulator, detector, etc. All these plasmonic components are CMOS compatible and could be integrated with electronic and conventional dielectric photonic devices on the same SOI chip. More potential plasmonic devices as well as plasmonic nanocircuits with complex functionalities are also addressed.