Mobile Robot Navigation Using Local Model Networks

Developing techniques for mobile robot navigation constitutes one of the major trends in the current research on mobile robotics. This paper develops a local model network (LMN) for mobile robot navigation. The LMN represents the mobile robot by a set of locally valid submodels that are Multi-Layer Perceptrons (MLPs). Training these submodels employs Back Propagation (BP) algorithm. The paper proposes the fuzzy C-means (FCM) in this scheme to divide the input space to sub regions, and then a submodel (MLP) is identified to represent a particular region. The submodels then are combined in a unified structure. In run time phase, Radial Basis Functions (RBFs) are employed as windows for the activated submodels. This proposed structure overcomes the problem of changing operating regions of mobile robots. Read data are used in all experiments. Results for mobile robot navigation using the proposed LMN reflect the soundness of the proposed scheme.

Design, Analysis and Modeling of Dual Band Microstrip Loop Antenna Using Defective Ground Plane

Present wireless communication demands compact and intelligent devices with multitasking capabilities at affordable cost. The focus in the presented paper is on a dual band antenna for wireless communication with the capability of operating at two frequency bands with same structure. Two resonance frequencies are observed with the second operation band at 4.2GHz approximately three times the first resonance frequency at 1.5GHz. Structure is simple loop of microstrip line with characteristic impedance 50 ohms. The proposed antenna is designed using defective ground structure (DGS) and shows the nearly one third reductions in size as compared to without DGS. This antenna was simulated on electromagnetic (EM) simulation software and fabricated using microwave integrated circuit technique on RT-Duroid dielectric substrate (εr= 2.22) of thickness (H=15 mils). The designed antenna was tested on automatic network analyzer and shows the good agreement with simulated results. The proposed structure is modeled into an equivalent electrical circuit and simulated on circuit simulator. Subsequently, theoretical analysis was carried out and simulated. The simulated, measured, equivalent circuit response, and theoretical results shows good resemblance. The bands of operation draw many potential applications in today’s wireless communication.

Mechanical Behavior of Deep-Drawn Cups with Aluminum/Duralumin Multi-Layered Clad Structures

This study aims to investigate mechanical behavior of deep-drawn cups consisting of aluminum (A1050)/ duralumin (A2017) multi-layered clad structures with micro- and macro-scale functional gradients. Such multi-layered clad structures are possibly used for a new type of crash-boxes in automobiles to effectively absorb the impact forces generated when automobiles having collisions. The effect of heat treatments on microstructure, compositional gradient, micro hardness in 2 and 6-layered aluminum/ duralumin clad structures, which were fabricated by hot rolling, have been investigated. Impact compressive behavior of deep-drawn cups consisting of such aluminum/ duralumin clad structures has been also investigated in terms of energy absorption and maximum force. Deep-drawn cups consisting of 6-layerd clad structures with microand macro-scale functional gradients exhibit superior properties in impact compressive tests.

Neural-Symbolic Machine-Learning for Knowledge Discovery and Adaptive Information Retrieval

In this paper, a model for an information retrieval system is proposed which takes into account that knowledge about documents and information need of users are dynamic. Two methods are combined, one qualitative or symbolic and the other quantitative or numeric, which are deemed suitable for many clustering contexts, data analysis, concept exploring and knowledge discovery. These two methods may be classified as inductive learning techniques. In this model, they are introduced to build “long term" knowledge about past queries and concepts in a collection of documents. The “long term" knowledge can guide and assist the user to formulate an initial query and can be exploited in the process of retrieving relevant information. The different kinds of knowledge are organized in different points of view. This may be considered an enrichment of the exploration level which is coherent with the concept of document/query structure.

Fractal Analysis on Human Colonic Pressure Activities based on the Box-counting Method

The colonic tissue is a complicated dynamic system and the colonic activities it generates are composed of irregular segmental waves, which are referred to as erratic fluctuations or spikes. They are also highly irregular with subunit fractal structure. The traditional time-frequency domain statistics like the averaged amplitude, the motility index and the power spectrum, etc. are insufficient to describe such fluctuations. Thus the fractal box-counting dimension is proposed and the fractal scaling behaviors of the human colonic pressure activities under the physiological conditions are studied. It is shown that the dimension of the resting activity is smaller than that of the normal one, whereas the clipped version, which corresponds to the activity of the constipation patient, shows with higher fractal dimension. It may indicate a practical application to assess the colonic motility, which is often indicated by the colonic pressure activity.

TS Fuzzy Controller to Stochastic Systems

This paper proposes the analysis and design of robust fuzzy control to Stochastic Parametrics Uncertaint Linear systems. This system type to be controlled is partitioned into several linear sub-models, in terms of transfer function, forming a convex polytope, similar to LPV (Linear Parameters Varying) system. Once defined the linear sub-models of the plant, these are organized into fuzzy Takagi- Sugeno (TS) structure. From the Parallel Distributed Compensation (PDC) strategy, a mathematical formulation is defined in the frequency domain, based on the gain and phase margins specifications, to obtain robust PI sub-controllers in accordance to the Takagi- Sugeno fuzzy model of the plant. The main results of the paper are based on the robust stability conditions with the proposal of one Axiom and two Theorems.

The Effect of Laser Surface Melting on the Microstructure and Mechanical Properties of Low Carbon Steel

The paper presents the results of microhardness and microstructure of low carbon steel surface melted using carbon dioxide laser with a wavelength of 10.6μm and a maximum output power of 2000W. The processing parameters such as the laser power, and the scanning rate were investigated in this study. After surface melting two distinct regions formed corresponding to the melted zone MZ, and the heat affected zone HAZ. The laser melted region displayed a cellular fine structures while the HAZ displayed martensite or bainite structure. At different processing parameters, the original microstructure of this steel (Ferrite+Pearlite) has been transformed to new phases of martensitic and bainitic structures. The fine structure and the high microhardness are evidence of the high cooling rates which follow the laser melting. The melting pool and the transformed microstructure in the laser surface melted region of carbon steel showed clear dependence on laser power and scanning rate.

Modeling and Simulation of a Hybrid Scooter

This paper presents a hybrid electric scooter model developed and simulated using Matlab/Simulink. This hybrid scooter modeled has a parallel hybrid structure. The main propulsion units consist of a two stroke internal combustion engine and a hub motor attached to the front wheel of the scooter. The methodology used to optimize the energy and fuel consumption of the hybrid electric scooter is the multi-mode approach. Various case studies were presented to check the model and were compared to the literatures. Results shown that the model developed was feasible and valuable.

Hybrid Control of Networked Multi-Vehicle System Considering Limitation of Communication Range

In this research, we study a control method of a multivehicle system while considering the limitation of communication range for each vehicles. When we control networked vehicles with limitation of communication range, it is important to control the communication network structure of a multi-vehicle system in order to keep the network-s connectivity. From this, we especially aim to control the network structure to the target structure. We formulate the networked multi-vehicle system with some disturbance and the communication constraints as a hybrid dynamical system, and then we study the optimal control problems of the system. It is shown that the system converge to the objective network structure in finite time when the system is controlled by the receding horizon method. Additionally, the optimal control probrems are convertible into the mixed integer problems and these problems are solvable by some branch and bound algorithm.

Analysis of Dynamic Loads Induced by Spectator Movements in Stadium

In the stadium structure, the significant dynamic responses such as resonance or similar behavior can be occurred by spectator rhythmical activities. Thus, accurate analysis and precise investigation of stadium structure that is subjected to dynamic loads are required for practical design and serviceability check of stadium structures. Moreover, it is desirable to measure and analyze the dynamic loads of spectator activities because these dynamic loads can not be easily expressed in numerical formula. In this study, various dynamic loads induced by spectator movements are measured and analyzed. These dynamic loads induced by spectators movement of stadium structure can be classified into the impact load and the periodic load. These dynamic loads can be expressed as Fourier harmonic load. And, these dynamic loads could be applied for the accurate vibration analysis of a stadium structure.

Optimal Multilayer Perceptron Structure For Classification of HIV Sub-Type Viruses

The feature of HIV genome is in a wide range because of it is highly heterogeneous. Hence, the infection ability of the virus changes related with different chemokine receptors. From this point, R5 and X4 HIV viruses use CCR5 and CXCR5 coreceptors respectively while R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the coreceptors of HIV genome. The aim of this study is to develop the optimal Multilayer Perceptron (MLP) for high classification accuracy of HIV sub-type viruses. To accomplish this purpose, the unit number in hidden layer was incremented one by one, from one to a particular number. The statistical data of R5X4, R5 and X4 viruses was preprocessed by the signal processing methods. Accessible residues of these virus sequences were extracted and modeled by Auto-Regressive Model (AR) due to the dimension of residues is large and different from each other. Finally the pre-processed dataset was used to evolve MLP with various number of hidden units to determine R5X4 viruses. Furthermore, ROC analysis was used to figure out the optimal MLP structure.

Li4SiO4 Prepared by Sol-gel Method as Potential Host for LISICON Structured Solid Electrolytes

In this study, Li4SiO4 powder was successfully synthesized via sol gel method followed by drying at 150oC. Lithium oxide, Li2O and silicon oxide, SiO2 were used as the starting materials with citric acid as the chelating agent. The obtained powder was then sintered at various temperatures. Crystallographic phase analysis, morphology and ionic conductivity were investigated systematically employing X-ray diffraction, Fourier Transform Infrared, Scanning Electron Microscopy and AC impedance spectroscopy. XRD result showed the formation of pure monoclinic Li4SiO4 crystal structure with lattice parameters a = 5.140 Å, b = 6.094 Å, c = 5.293 Å, β = 90o in the sample sintered at 750oC. This observation was confirmed by FTIR analysis. The bulk conductivity of this sample at room temperature was 3.35 × 10-6 S cm-1 and the highest bulk conductivity of 1.16 × 10-4 S cm-1 was obtained at 100°C. The results indicated that, the Li4SiO4 compound has potential to be used as host for LISICON structured solid electrolyte for low temperature application.

Numerical Analysis of Wind Loads on a Hemicylindrical Roof Building

The flow field over a three dimensional pole barn characterized by a cylindrical roof has been numerically investigated. Wind pressure and viscous loads acting on the agricultural building have been analyzed for several incoming wind directions, so as to evaluate the most critical load condition on the structure. A constant wind velocity profile, based on the maximum reference wind speed in the building site (peak gust speed worked out for 50 years return period) and on the local roughness coefficient, has been simulated. In order to contemplate also the hazard due to potential air wedging between the stored hay and the lower part of the ceiling, the effect of a partial filling of the barn has been investigated. The distribution of wind-induced loads on the structure have been determined, allowing a numerical quantification of the effect of wind direction on the induced stresses acting on a hemicylindrical roof.

Gypseous Soil Improvement using Fuel Oil

This research investigates the suitability of fuel oil in improving gypseous soil. A detailed laboratory tests were carried-out on two soils (soil I with 51.6% gypsum content, and soil II with 26.55%), where the two soils were obtained from Al-Therthar site (Al-Anbar Province-Iraq). This study examines the improvement of soil properties using the gypsum material which is locally available with low cost to minimize the effect of moisture on these soils by using the fuel oil. This study was conducted on two models of the soil gypsum, from the Tharthar area. The first model was sandy soil with Gypsum content of (51.6%) and the second is clayey soil and the content of Gypsum is (26.55%). The program included tests measuring the permeability and compressibility of the soil and their collapse properties. The shear strength of the soil and the amounts of weight loss of fuel oil due to drying had been found. These tests have been conducted on the treated and untreated soils to observe the effect of soil treatment on the engineering properties when mixed with varying degrees of fuel oil with the equivalent of the water content. The results showed that fuel oil is a good material to modify the basic properties of the gypseous soil of collapsibility and permeability, which are the main problems of this soil and retained the soil by an appropriate amount of the cohesion suitable for carrying the loads from the structure.

Virtual Assembly in a Semi-Immersive Environment

Virtual Assembly (VA) is one of the key technologies in advanced manufacturing field. It is a promising application of virtual reality in design and manufacturing field. It has drawn much interest from industries and research institutes in the last two decades. This paper describes a process for integrating an interactive Virtual Reality-based assembly simulation of a digital mockup with the CAD/CAM infrastructure. The necessary hardware and software preconditions for the process are explained so that it can easily be adopted by non VR experts. The article outlines how assembly simulation can improve the CAD/CAM procedures and structures; how CAD model preparations have to be carried out and which virtual environment requirements have to be fulfilled. The issue of data transfer is also explained in the paper. The other challenges and requirements like anti-aliasing and collision detection have also been explained. Finally, a VA simulation has been carried out for a ball valve assembly and a car door assembly with the help of Vizard virtual reality toolkit in a semi-immersive environment and their performance analysis has been done on different workstations to evaluate the importance of graphical processing unit (GPU) in the field of VA.

Evolutionary Dynamics on Small-World Networks

We study how the outcome of evolutionary dynamics on graphs depends on a randomness on the graph structure. We gradually change the underlying graph from completely regular (e.g. a square lattice) to completely random. We find that the fixation probability increases as the randomness increases; nevertheless, the increase is not significant and thus the fixation probability could be estimated by the known formulas for underlying regular graphs.

The Key Role of the Steroidal Hormones in the Pattern Distribution of the Epiphyseal Structure in Rabbit

Steroidal hormones with the efficient changes on the epiphyseal growth plate may influence tissue structure properties. Presents paper to investigate the effects of gonadectomy in the pattern distribution of the epiphyseal structure. Fifteen adult female New Zealand white rabbits were separated into three groups. One group was intact and others groups were selected for surgical operation. From these two groups, one group carried out steroidal administration. The results obtained showed that there is no statistically difference in the mean diameter of the growth plate cells between all three groups. The maximum value of the cartilage cells were allocated to the gonadectomized group and the minimum number were observed in Hormonal induced group significantly. Growth plate height was significantly greater in gonadectomized group than in two other groups.

Using Spectral Vectors and M-Tree for Graph Clustering and Searching in Graph Databases of Protein Structures

In this paper, we represent protein structure by using graph. A protein structure database will become a graph database. Each graph is represented by a spectral vector. We use Jacobi rotation algorithm to calculate the eigenvalues of the normalized Laplacian representation of adjacency matrix of graph. To measure the similarity between two graphs, we calculate the Euclidean distance between two graph spectral vectors. To cluster the graphs, we use M-tree with the Euclidean distance to cluster spectral vectors. Besides, M-tree can be used for graph searching in graph database. Our proposal method was tested with graph database of 100 graphs representing 100 protein structures downloaded from Protein Data Bank (PDB) and we compare the result with the SCOP hierarchical structure.

Design of Variable Fractional-Delay FIR Differentiators

In this paper, the least-squares design of variable fractional-delay (VFD) finite impulse response (FIR) digital differentiators is proposed. The used transfer function is formulated so that Farrow structure can be applied to realize the designed system. Also, the symmetric characteristics of filter coefficients are derived, which leads to the complexity reduction by saving almost a half of the number of coefficients. Moreover, all the elements of related vectors or matrices for the optimal process can be represented in closed forms, which make the design easier. Design example is also presented to illustrate the effectiveness of the proposed method.

Identification of the Electronic City Application Obstacles in Iran

Amazing development of the information technology, communications and internet expansion as well as the requirements of the city managers to new ideas to run the city and higher participation of the citizens encourage us to complete the electronic city as soon as possible. The foundations of this electronic city are in information technology. People-s participation in metropolitan management is a crucial topic. Information technology does not impede this matter. It can ameliorate populace-s participation and better interactions between the citizens and the city managers. Citizens can proffer their ideas, beliefs and votes through digital mass media based upon the internet and computerization plexuses on the topical matters to receive appropriate replies and services. They can participate in urban projects by becoming cognizant of the city views. The most significant challenges are as follows: information and communicative management, altering citizens- views, as well as legal and office documents Electronic city obstacles have been identified in this research. The required data were forgathered through questionnaires to identify the barriers from a statistical community comprising specialists and practitioners of the ministry of information technology and communication, the municipality information technology organization. The conclusions demonstrate that the prioritized electronic city application barriers in Iran are as follows: The support quandaries (non-financial ones), behavioral, cultural and educational plights, the security, legal and license predicaments, the hardware, orismological and infrastructural curbs, the software and fiscal problems.