Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads

This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.

Analyzing the Participation of Young People in Politics: An Exploratory Study Applied on Motivation in Croatia

The application of marketing to the domain of politics has become relevant in recent times. With this article the authors wanted to explore the issue of the current political engagement among young people in Croatia. The question is what makes young people (age 18-30) politically active in young democracies such as that of the Republic of Croatia. Therefore, the objective of this study was to discover the real or hidden motivations behind the decision to actively participate in politics among young members of the two largest political parties in the country – the Croatian Democratic Union and the Social Democratic Party of Croatia. The study expected to find that the motivation for political engagement of young people is often connected with a possible achievement of individual goals and egoistic needs such as: self-acceptance, social success, financial success, prestige, reputation, status, recognition from the others etc. It was also expected that, due to the poor economic and social situation in the country, young people feel an increasing disconnection from politics. Additionally, the authors expected to find that there is a huge potential to engage young people in the political life of the country through a proper and more interactive use of marketing communication campaigns and social media platforms, with an emphasis on highly ethical motives of political activity and their benefits to society. All respondents included in the quantitative survey (sample size [N=100]) are active in one of the two largest political parties in Croatia. The sampling and distribution of the survey occurred in the field in September 2016. The results of the survey demonstrate that in Croatia, the way young people feel about politics and act accordingly, are in fact similar to what the theory describes. The research findings reveal that young people are politically active; however, the challenge is to find a way to motivate even more young people in Croatia to actively participate in the political and democratic processes in the country and to encourage them to see additional benefits out of this practice, not only related to their individual motives, but related more to the well-being of Croatia as a country and of every member of society. The research also discovered a huge potential for political marketing communication possibilities, especially related to interactive social media. It is possible that the social media channels have a stronger influence on the decision-making process among young people when compared to groups of reference. The level of interest in politics among young Croatians varies; some of them are almost indifferent, whilst others express a serious interest in different ways to actively contribute to the political life of the country, defining a participation in the political life of their country almost as their moral obligation. However, additional observations and further research need to be conducted to get a clearer and more precise picture about the interest in politics among young people in Croatia and their social potential.

A Comparison of Tsunami Impact to Sydney Harbour, Australia at Different Tidal Stages

Sydney Harbour is an iconic location with a dense population and low-lying development. On the east coast of Australia, facing the Pacific Ocean, it is exposed to several tsunamigenic trenches. This paper presents a component of the most detailed assessment of the potential for earthquake-generated tsunami impact on Sydney Harbour to date. Models in this study use dynamic tides to account for tide-tsunami interaction. Sydney Harbour’s tidal range is 1.5 m, and the spring tides from January 2015 that are used in the modelling for this study are close to the full tidal range. The tsunami wave trains modelled include hypothetical tsunami generated from earthquakes of magnitude 7.5, 8.0, 8.5, and 9.0 MW from the Puysegur and New Hebrides trenches as well as representations of the historical 1960 Chilean and 2011 Tohoku events. All wave trains are modelled for the peak wave to coincide with both a low tide and a high tide. A single wave train, representing a 9.0 MW earthquake at the Puysegur trench, is modelled for peak waves to coincide with every hour across a 12-hour tidal phase. Using the hydrodynamic model ANUGA, results are compared according to the impact parameters of inundation area, depth variation and current speeds. Results show that both maximum inundation area and depth variation are tide dependent. Maximum inundation area increases when coincident with a higher tide, however, hazardous inundation is only observed for the larger waves modelled: NH90high and P90high. The maximum and minimum depths are deeper on higher tides and shallower on lower tides. The difference between maximum and minimum depths varies across different tidal phases although the differences are slight. Maximum current speeds are shown to be a significant hazard for Sydney Harbour; however, they do not show consistent patterns according to tide-tsunami phasing. The maximum current speed hazard is shown to be greater in specific locations such as Spit Bridge, a narrow channel with extensive marine infrastructure. The results presented for Sydney Harbour are novel, and the conclusions are consistent with previous modelling efforts in the greater area. It is shown that tide must be a consideration for both tsunami modelling and emergency management planning. Modelling with peak tsunami waves coinciding with a high tide would be a conservative approach; however, it must be considered that maximum current speeds may be higher on other tides.

Reliability Analysis of Computer Centre at Yobe State University Using LRU Algorithm

In this paper, we focus on the reliability and performance analysis of Computer Centre (CC) at Yobe State University, Damaturu, Nigeria. The CC consists of three servers: one database mail server, one redundant and one for sharing with the client computers in the CC (called as a local server). Observing the different possibilities of the functioning of the CC, the analysis has been done to evaluate the various popular measures of reliability such as availability, reliability, mean time to failure (MTTF), profit analysis due to the operation of the system. The system can ultimately fail due to the failure of router, redundant server before repairing the mail server and switch failure. The system can also partially fail when a local server fails. The failed devices have restored according to Least Recently Used (LRU) techniques. The system can also fail entirely due to a cooling failure of the server, electricity failure or some natural calamity like earthquake, fire tsunami, etc. All the failure rates are assumed to be constant and follow exponential time distribution, while the repair follows two types of distributions: i.e. general and Gumbel-Hougaard family copula distribution.

Optimized Energy Scheduling Algorithm for Energy Efficient Wireless Sensor Networks

Wireless sensor networks can be tiny, low cost, intelligent sensors connected with advanced communication systems. WSNs have pulled in significant consideration as a matter of fact that, industrial as well as medical solicitations employ these in monitoring targets, conservational observation, obstacle exposure, movement regulator etc. In these applications, sensor hubs are thickly sent in the unattended environment with little non-rechargeable batteries. This constraint requires energy-efficient systems to drag out the system lifetime. There are redundancies in data sent over the network. To overcome this, multiple virtual spine scheduling has been presented. Such networks problems are called Maximum Lifetime Backbone Scheduling (MLBS) problems. Though this sleep wake cycle reduces radio usage, improvement can be made in the path in which the group heads stay selected. Cluster head selection with emphasis on geometrical relation of the system will enhance the load sharing among the nodes. Also the data are analyzed to reduce redundant transmission. Multi-hop communication will facilitate lighter loads on the network.

Exchange Rate Volatility, Its Determinants and Effects on the Manufacturing Sector in Nigeria

This study evaluated the effect of exchange rate volatility on the manufacturing sector of Nigeria. The flow and stock market theories of exchange rate determination was adopted considering macroeconomic determinants such as balance of trade, trade openness, and net international investment. Furthermore, the influence of changes in parallel exchange rate, official exchange rate and real effective exchange rate was modeled on the manufacturing sector output. Vector autoregression techniques and vector error correction mechanism were adopted to explore the macroeconomic determinants of exchange rate fluctuation in Nigeria and to examine the influence of exchange rate volatility on the manufacturing sector output in Nigeria. The exchange rate showed an unstable and volatile movement in Nigeria. Official exchange rate significantly impacted on the manufacturing sector of Nigeria and shock to previous manufacturing sector output caused 60.76% of the fluctuation in the manufacturing sector output in Nigeria. Trade balance, trade openness and net international investments did not significantly determine exchange rate in Nigeria. However, own shock accounted for about 95% of the variation of exchange rate fluctuation in the short-run and long-run. Among other macroeconomic variables, net international investment accounted for about 2.85% variation of the real effective exchange rate fluctuation in the short-run and in the long-run. Monetary authorities should maintain stability of the exchange rates through proper management so as to encourage local production and government should formulate and implement policies that will develop other sectors of the economy as this will widen the country’s revenue base, reduce our over reliance on oil sector for our foreign exchange earnings and in turn reduce the shocks on our domestic economy.

Technological Development and Implementation of a Robotic Arm Motioned by Programmable Logic Controller

The robot manipulator is an equipment that stands out for two reasons: Firstly because of its characteristics of movement and reprogramming, resembling the arm; secondly, by adding several areas of knowledge of science and engineering. The present work shows the development of the prototype of a robotic manipulator driven by a Programmable Logic Controller (PLC), having two degrees of freedom, which allows the movement and displacement of mechanical parts, tools, and objects in general of small size, through an electronic system. The aim is to study direct and inverse kinematics of the robotic manipulator to describe the translation and rotation between two adjacent links of the robot through the Denavit-Hartenberg parameters. Currently, due to the many resources that microcomputer systems offer us, robotics is going through a period of continuous growth that will allow, in a short time, the development of intelligent robots with the capacity to perform operations that require flexibility, speed and precision.

Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump

Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.

Adaptive Responses of Carum copticum to in vitro Salt Stress

Salinity is one of the most widespread agricultural problems in arid and semi-arid areas that limits the plant growth and crop productivity. In this study, the salt stress effects on protein, reducing sugar, proline contents and antioxidant enzymes activities of Carum copticum L. under in vitro conditions were studied. Seeds of C. copticum were cultured in Murashige and Skoog (MS) medium containing 0, 25, 50, 100 and 150 mM NaCl and calli were cultured in MS medium containing 1 μM 2, 4-dichlorophenoxyacetic acid, 4 μM benzyl amino purine and different levels of NaCl (0, 25, 50, 100 and 150 mM). After NaCl treatment for 28 days, the proline and reducing sugar contents of shoots, roots and calli increased significantly in relation to the severity of the salt stress. The highest amount of proline and carbohydrate were observed at 150 and 100 mM NaCl, respectively. The reducing sugar accumulation in shoots was the highest as compared to roots, whereas, proline contents did not show any significant difference in roots and shoots under salt stress. The results showed significant reduction of protein contents in seedlings and calli. Based on these results, proteins extracted from the shoots, roots and calli of C. copticum treated with 150 mM NaCl showed the lowest contents. The positive relationships were observed between activity of antioxidant enzymes and the increase in stress levels. Catalase, ascorbate peroxidase and superoxide dismutase activity increased significantly under salt concentrations in comparison to the control. These results suggest that the accumulation of proline and sugars, and activation of antioxidant enzymes play adaptive roles in the adaptation of seedlings and callus of C. copticum to saline conditions.

The Contribution of the PCR-Enzymatic Digestion in the Positive Diagnosis of Proximal Spinal Muscular Atrophy in the Moroccan Population

The proximal spinal muscular atrophy (SMA) is a group of neuromuscular disorders characterized by progressive muscle weakness due to the degeneration and loss of anterior motor neurons of the spinal cord. Depending on the age of onset of symptoms and their evolution, four types of SMA, varying in severity, result in a mutations of the SMN gene (survival of Motor neuron). We have analyzed the DNA of 295 patients referred to our genetic counseling; since January 1996 until October 2014; for suspected SMA. The homozygous deletion of exon 7 of the SMN gene was found in 133 patients; of which, 40.6% were born to consanguineous parents. In countries like Morocco, where the frequency of heterozygotes for SMA is high, genetic testing should be offered as first-line and, after careful clinical assessment, especially in newborns and infants with congenital hypotonia unexplained and prognosis compromise. The molecular diagnosis of SMA allows a quick and certainly diagnosis, provide adequate genetic counseling for families at risk and suggest, for couples who want prenatal diagnosis. The analysis of the SMN gene is a perfect example of genetic testing with an excellent cost/benefit ratio that can be of great interest in public health, especially in low-income countries. We emphasize in this work for the benefit of the generalization of molecular diagnosis of SMA by the technique of PCR-enzymatic digestion in other centers in Morocco.

Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage

Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.

Radiation Usage Impact of on Anti-Nutritional Compounds (Antitrypsin and Phytic Acid) of Livestock and Poultry Foods

Review was carried out on important anti-nutritional compounds of livestock and poultry foods and the effect of radiation usage. Nowadays, with advancement in technology, different methods have been considered for the optimum usage of nutrients in livestock and poultry foods. Steaming, extruding, pelleting, and the use of chemicals are the most common and popular methods in food processing. Use of radiation in food processing researches in the livestock and poultry industry is currently highly regarded. Ionizing (electrons, gamma) and non-ionizing beams (microwave and infrared) are the most useable rays in animal food processing. In recent researches, these beams have been used to remove and reduce the anti-nutritional factors and microbial contamination and improve the digestibility of nutrients in poultry and livestock food. The evidence presented will help researchers to recognize techniques of relevance to them. Simplification of some of these techniques, especially in developing countries, must be addressed so that they can be used more widely.

Characterization of Ajebo Kaolinite Clay for Production of Natural Pozzolan

Calcined kaolinite clay (CKC) is a pozzolanic material that is current drawing research attention. This work investigates the conditions for the best performance of a CKC from a kaolinite clay source in Ajebo, Abeokuta (southwest Nigeria) known for its commercial availability. Samples from this source were subjected to X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). XRD shows that kaolinite is the main mineral in the clay source. This mineral is responsible for the pozzolanic behavior of CKC. DSC indicates that the transformation from the clay to CKC occurred between 550 and 750 oC. Using this temperature range, clay samples were milled and different CKC samples were produced in an electric muffle furnace using temperatures of 550, 600, 650, 700, 750 and 800 oC respectively for 1 hour each. This was also repeated for 2 hours. The degree of de-hydroxylation (dtg) and strength activity index (SAI) were also determined for each of the CKC samples. The dtg and SAI tests were repeated two more times for each sample and averages were taken. Results showed that peak dtg occurred at 750 oC for 1 hour calcining combination (94.27%) whereas marginal differences were recorded at some lower temperatures (90.97% for 650 oC for 2 hours; 91.05% for 700 oC for 1 hour and 92.77% for 700 oC for 2 hours). Optimum SAI was reported at 700 oC for 1 hour (99.05%). Rating SAI as a better parameter than dtg, 700 oC for 1 hour combination was adopted as the best calcining condition. The paper recommends the adoption of this clay source for pozzolan production by adopting the calcining conditions established in this work.

Jamun Juice Extraction Using Commercial Enzymes and Optimization of the Treatment with the Help of Physicochemical, Nutritional and Sensory Properties

Jamun (Syzygium cuminii L.) is one of the important indigenous minor fruit with high medicinal value. The jamun cultivation is unorganized and there is huge loss of this fruit every year. The perishable nature of the fruit makes its postharvest management further difficult. Due to the strong cell wall structure of pectin-protein bonds and hard seeds, extraction of juice becomes difficult. Enzymatic treatment has been commercially used for improvement of juice quality with high yield. The objective of the study was to optimize the best treatment method for juice extraction. Enzymes (Pectinase and Tannase) from different stains had been used and for each enzyme, best result obtained by using response surface methodology. Optimization had been done on the basis of physicochemical property, nutritional property, sensory quality and cost estimation. According to quality aspect, cost analysis and sensory evaluation, the optimizing enzymatic treatment was obtained by Pectinase from Aspergillus aculeatus strain. The optimum condition for the treatment was 44 oC with 80 minute with a concentration of 0.05% (w/w). At these conditions, 75% of yield with turbidity of 32.21NTU, clarity of 74.39%T, polyphenol content of 115.31 mg GAE/g, protein content of 102.43 mg/g have been obtained with a significant difference in overall acceptability.

Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir

We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.

The Use of SD Bioline TB AgMPT64® Detection Assay for Rapid Characterization of Mycobacteria in Nigeria

Performing culture and characterization of mycobacteria in low resource settings like Nigeria is a very difficult task to undertake because of the very few and limited laboratories carrying out such an experiment; this is a largely due to stringent and laborious nature of the tests. Hence, a rapid, simple and accurate test for characterization is needed. The “SD BIOLINE TB Ag MPT 64 Rapid ®” is a simple and rapid immunochromatographic test used in differentiating Mycobacteria into Mycobacterium tuberculosis (NTM). The 100 sputa were obtained from patients suspected to be infected with tuberculosis and presented themselves to hospitals for check-up and treatment were involved in the study. The samples were cultured in a class III Biosafety cabinet and level III biosafety practices were followed. Forty isolates were obtained from the cultured sputa, and there were identified as Acid-fast bacilli (AFB) using Zeihl-Neelsen acid-fast stain. All the isolates (AFB positive) were then subjected to the SD BIOLINE Analyses. A total of 31 (77.5%) were characterized as MTBC, while nine (22.5%) were NTM. The total turnaround time for the rapid assay was just 30 minutes as compared to a few days of phenotypic and genotypic method. It was simple, rapid and reliable test to differentiate MTBC from NTM.

Nutritional Value Determination of Different Varieties of Oats and Barley Using Near-Infrared Spectroscopy Method for the Horses Nutrition

In horse nutrition, the most suitable cereal for their rations composition could be defined as oats and barley. Oats have high nutritive value because it provides more protein, fiber, iron and zinc than other whole grains, has good taste, and an activity of stimulating metabolic changes in the body. Another cereal – barley is very similar to oats as a feed except for some characteristics that affect how it is used; however, barley is lower in fiber than oats and is classified as a "heavy" feed. The value of oats and barley grain, first of all is dependent on its composition. Near-infrared spectroscopy (NIRS) has long been considered and used as a significant method in component and quality analysis and as an emerging technology for authenticity applications for cereal quality control. This paper presents the chemical and amino acid composition of different varieties of barley and oats, also digestible energy of different cereals for horses. Ten different spring barley (n = 5) and oats (n = 5) varieties, grown in one location in Lithuania, were assayed for their chemical composition (dry matter, crude protein, crude fat, crude ash, crude fiber, starch) and amino acids content, digestible amino acids and amino acids digestibility. Also, the grains digestible energy for horses was calculated. The oats and barley samples reflectance spectra were measured by means of NIRS using Foss-Tecator DS2500 equipment. The chemical components: fat, crude protein, starch and fiber differed statistically (P

Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.

Students’ Views on Mathematics Learning: A Cross-Sectional Survey of Senior Secondary Schools Students in Katsina State of Nigeria

The aim of this paper is to study students’ view on mathematics learning in Katsina State Senior Secondary Schools of Nigeria, such as their conceptions of mathematics, attitudes toward mathematics learning, etc. A questionnaire was administered to a random sample of 1,225 senior secondary two (SS II) students of Katsina State in Nigeria. The data collected showed a clear picture of the hurdles that affect the teaching and learning of mathematics in our schools. Problems such as logistics and operational which include shortage of mathematics teachers, non–availability of a mathematics laboratory, etc. were identified. It also depicted the substantial trends of changing views and attitudes toward mathematics across secondary schools. Students’ responses to the conception of mathematics were consistent and they demonstrated some specific characteristics of their views in learning mathematics. This survey has provided useful information regarding students’ needs and aspirations in mathematics learning for curriculum planners and frontline teachers for future curriculum reform and implementation.

Obtaining Composite Cotton Fabric by Cyclodextrin Grafting

Finishing is an important part of fabric processing with which a wide range of features are imparted to greige or colored fabrics for various end-uses. Especially, by the addition or impartation of nano-scaled particles to the fabric structure composite fabrics, a kind of composite materials can be acquired. Composite materials, generally shortened as composites or in other words composition materials, are engineered or naturally occurring materials made from two or more component materials with significantly different physical, mechanical or chemical characteristics remaining separate and distinctive at the macroscopic or microscopic scale within the end product structure. Therefore, the technique finishing which is one of the fundamental methods to be applied on fabrics for obtainment of composite fabrics with many functionalities was used in the current study with the same purpose. However, regardless of the finishing materials applied, the efficient life of finished product on offering desired feature is low, since the durability of finishes on the material is limited. Any increase in durability of these finishes on textiles would enhance the life of use for textiles, which will result in happier users. Therefore, in this study, since higher durability was desired for the finishing materials fixed on the fabrics, nano-scaled hollow structured cyclodextrins were chemically imparted by grafting to the structure of conventional cotton fabrics by the help of finishing technique in order to be fixed permanently. By this way, a processed and functionalized base fabric having potential to be treated in the subsequent processes with many different finishing agents and nanomaterials could be obtained. Henceforth, this fabric can be used as a multi-functional fabric due to the encapturing ability of cyclodextrins to molecules/particles via physical/chemical means. In this study, scoured and rinsed woven bleached plain weave 100% cotton fabrics were utilized because textiles made of cotton are the most demanded textile products in the textile market by the textile consumers in daily life. Cotton fabric samples were immersed in treating baths containing β-cyclodextrin and 1,2,3,4-butanetetracarboxylic acid and to reduce the curing temperature the catalyst sodium hypophosphite monohydrate was used. All impregnated fabric samples were pre-dried. The reaction of grafting was performed in dry state. The treated and cured fabric samples were rinsed with warm distilled water and dried. The samples were dried for 4 h and weighed before and after finishing and rinsing. Stability and durability of β-cyclodextrins on fabric surface against external factors such as washing as well as strength of functionalized fabric in terms of tensile and tear strength were tested. Presence and homogeneity of distribution of β-cyclodextrins on fabric surface were characterized.