Statistical Modeling of Constituents in Ash Evolved From Pulverized Coal Combustion

Industries using conventional fossil fuels have an  interest in better understanding the mechanism of particulate  formation during combustion since such is responsible for emission  of undesired inorganic elements that directly impact the atmospheric  pollution level. Fine and ultrafine particulates have tendency to  escape the flue gas cleaning devices to the atmosphere. They also  preferentially collect on surfaces in power systems resulting in  ascending in corrosion inclination, descending in the heat transfer  thermal unit, and severe impact on human health. This adverseness  manifests particularly in the regions of world where coal is the  dominated source of energy for consumption.  This study highlights the behavior of calcium transformation as  mineral grains verses organically associated inorganic components  during pulverized coal combustion. The influence of existing type of  calcium on the coarse, fine and ultrafine mode formation mechanisms  is also presented. The impact of two sub-bituminous coals on particle  size and calcium composition evolution during combustion is to be  assessed. Three mixed blends named Blends 1, 2, and 3 are selected  according to the ration of coal A to coal B by weight. Calcium  percentage in original coal increases as going from Blend 1 to 3.  A mathematical model and a new approach of describing  constituent distribution are proposed. Analysis of experiments of  calcium distribution in ash is also modeled using Poisson distribution.  A novel parameter, called elemental index λ, is introduced as a  measuring factor of element distribution.  Results show that calcium in ash that originally in coal as mineral  grains has index of 17, whereas organically associated calcium  transformed to fly ash shown to be best described when elemental  index λ is 7.  As an alkaline-earth element, calcium is considered the  fundamental element responsible for boiler deficiency since it is the  major player in the mechanism of ash slagging process. The  mechanism of particle size distribution and mineral species of ash  particles are presented using CCSEM and size-segregated ash  characteristics. Conclusions are drawn from the analysis of  pulverized coal ash generated from a utility-scale boiler.  

Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm

In today’s business environment, companies should  make strategic decisions to gain sustainable competitive advantage.  Order selection is a crucial issue among these decisions especially for  steel production industry. When the companies allocate a high  proportion of their design and production capacities to their ongoing  projects, determining which customer order should be chosen among  the potential orders without exceeding the remaining capacity is the  major critical problem. In this study, it is aimed to identify and  prioritize the evaluation factors for the customer order selection  problem. Conjoint Analysis is used to examine the importance level  of each factor which is determined as the potential profit rate per unit  of time, the compatibility of potential order with available capacity,  the level of potential future order with higher profit, customer credit  of future business opportunity, and the negotiability level of  production schedule for the order.  

Solid Waste Management through Mushroom Cultivation – An Eco Friendly Approach

Waste of certain process can be the input source of  other sectors in order to reduce environmental pollution. Today there  are more and more solid wastes are generated, but only very small  amount of those are recycled. So, the threatening of environmental  pressure to public health is very serious. The methods considered for  the treatment of solid waste are biogas tanks or processing to make  animal feed and fertilizer, however, they did not perform well. An  alternative approach is growing mushrooms on waste residues. This  is regarded as an environmental friendly solution with potential  economical benefit. The substrate producers do their best to produce  quality substrate at low cost. Apart from other methods, this can be  achieved by employing biologically degradable wastes used as the  resource material component of the substrate. Mushroom growing is  a significant tool for the restoration, replenishment and remediation  of Earth’s overburdened ecosphere. One of the rational methods of  waste utilization involves locally available wastes. The present study  aims to find out the yield of mushroom grown on locally available  waste for free and to conserve our environment by recycling wastes.  

A New Self-Tuning Fuzzy PD Controller of a BDFIG for Wind Energy Conversion

This paper presents a new control scheme to control a brushless doubly fed induction generator (BDFIG) using back-to-back PWM converters for wind power generation. The proposed control scheme is a New Self-Tuning Fuzzy Proportional-Derivative Controller (NSTFPDC). The goal of BDFIG control is to achieve a similar dynamic performance to the doubly fed induction generator (DFIG), exploiting the well-known induction machine vector control philosophy. The performance of NSTFPDC controller has been investigated and compared with the two controllers, called Proportional–Integral (PI) and PD-like Fuzzy Logic controller (PD-like FLC) based BDFIG. The simulation results demonstrate the effectiveness and the robustness of the NSTFPDC controller.

Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells

The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, there are some deficiencies in their operation, mainly those that use ethanol as a hydrogen source, that require a certain attention. Therefore, this research aimed to develop Nafion® composite membranes, mixing clay minerals, kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and, at the same time, to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, the protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, the Nafion® composite membranes were stable up to a temperature of 325ºC.

PSS with Multiple FACTS Controllers Coordinated Design and Real-Time Implementation Using Advanced Adaptive PSO

In this article, coordinated tuning of power system stabilizer (PSS) with static var compensator (SVC) and thyristor controlled series capacitor (TCSC) in multi-machine power system is proposed. The design of proposed coordinated damping controller is formulated as an optimization problem and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization (AAPSO). The objective function is framed with the inter-area speed deviations of the generators and it is minimized using AAPSO to improve the dynamic stability of power system under severe disturbance. The proposed coordinated controller performance is evaluated under a wide range of system operating conditions with three-phase fault disturbance. Using time domain simulations the damping characteristics of proposed controller is compared with individually tuned PSS, SVC and TCSC controllers. Finally, the real-time simulations are carried out in Opal-RT hardware simulator to synchronize the proposed controller performance in the real world.

Decode and Forward Cooperative Protocol Enhancement Using Interference Cancellation

Cooperative communication systems are considered to be a promising technology to improve the system capacity, reliability and performances over fading wireless channels. Cooperative relaying system with a single antenna will be able to reach the advantages of multiple antenna communication systems. It is ideally suitable for the distributed communication systems; the relays can cooperate and form virtual MIMO systems. Thus the paper will aim to investigate the possible enhancement of cooperated system using decode and forward protocol. On the decode and forward an attempt to cancel or at least reduce the interference instead of increasing the SNR values is achieved. The latter can be achieved via the use group of relays depending on the channel status from source to relay and relay to destination respectively. In the proposed system, the transmission time has been divided into two phases to be used by the decode and forward protocol. The first phase has been allocated for the source to transmit its data whereas the relays and destination nodes are in receiving mode. On the other hand, the second phase is allocated for the first and second groups of relay nodes to relay the data to the destination node. Simulations results have shown an improvement in performance is achieved compared to the conventional decode and forward in terms of BER and transmission rate.

Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives Using Taguchi Experimental Design Methodology

The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 polycyclic aromatic hydrocarbons (PAHs) and derivates, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For Gasoline (SP95-E10) and Diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction.

An Empirical Analysis of the Impact of Selected Macroeconomic Variables on Capital Formation in Libya (1970–2010)

This study is carried out to provide an insight into the analysis of the impact of selected macro-economic variables on gross fixed capital formation in Libya using annual data over the period (1970-2010). The importance of this study comes from the ability to show the relative important factors that impact the Libyan gross fixed capital formation. This understanding would give indications to decision makers on which policy they must focus to stimulate the economy. An Autoregressive Distributed Lag (ARDL) modeling process is employed to investigate the impact of the Gross Domestic Product, Monetary Base and Trade Openness on Gross Fixed Capital Formation in Libya. The results of this study reveal that there is an equilibrium relationship between capital formation and its determinants. The results also indicate that GDP and trade openness largely explain the pattern of capital formation in Libya. The findings and recommendations provide vital information relevant for policy formulation and implementation aimed to improve capital formation in Libya.

Definition, Structure and Core Functions of the State Image

Humanity is entering an era when "virtual reality" as the image of the world created by the media with the help of the Internet does not match the reality in many respects, when new communication technologies create a fundamentally different and previously unknown "global space". According to these technologies, the state begins to change the basic technology of political communication of the state and society, the state and the state. Nowadays image of the state becomes the most important tool and technology. Image is a purposefully created image granting political object (person, organization, country, etc.) certain social and political values and promoting more emotional perception. Political image of the state plays an important role in international relations. The success of the country's foreign policy, development of trade and economic relations with other countries depends on whether it is positive or negative. Foreign policy image has an impact on political processes taking place in the state: the negative image of the country's can be used by opposition forces as one of the arguments to criticize the government and its policies.

Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation

Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, high voltage direct current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of liquid silicone rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to nano-aluminum trihydrate (ATH) were confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nanofiller dispersion state. The LSR nanocomposite was prepared by compounding LSR filled nano-sized ATH filler. The dc insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without a filler. 

Analyzing the Historical Ayazma Bath within the Scope of Integrated Preservation and Specifying the Criteria for Reuse

Today, preservation of the historical constructions in "single construction" scale creates an inadequate preservation model in terms of the integrity of the historical environment in which they are located. However, in order to preserve these structures forming this integrity with a holistic approach, the structures either need to continue their unique functions or to be reshaped for function conforming to today's comfort conditions brought by the modern life. In this work, the preservation of Ayazma Social Complex located in Ayazma Neighborhood of Üsküdar, one of the most important historical districts of İstanbul, with integrated preservation method has been discussed. In the conventional Turkish architecture, the social complex is a structure complex formed via constructing the public buildings required for the daily life of the people living in a settlement. Thus, the preservation of the social complexes within the scope of "integrated preservation" has gained importance. Ayazma Social Complex that forms the examination area of this work consists of a mosque in its center and structures around this mosque such as sultan mansion, time assignment center, primary school, stores, bath and water reservoirs. Mosque, sultan mansion and the water reservoirs survived to today as mostly preserved status. However, time assignment center, primary school and the stores didn't survive to today and new structures were built on their plots. The bath was mostly damaged and only the wall residues survive to today. Thus, it's urgent and crucial especially carry out the preservation restoration of the bath in accordance with integrated preservation principles. The preservation problems of the bath based on the social complex were determined as a working method and preservation suggestions were made to overcome these problems and to include the bath into daily life. Furthermore, it was suggested that the bath should be reshaped for a different function in order to be preserved with the social complex.

Improvement of Data Transfer over Simple Object Access Protocol (SOAP)

This paper presents a designed algorithm involves improvement of transferring data over Simple Object Access Protocol (SOAP). The aim of this work is to establish whether using SOAP in exchanging XML messages has any added advantages or not. The results showed that XML messages without SOAP take longer time and consume more memory, especially with binary data.

Pattern Recognition Using Feature Based Die-Map Clusteringin the Semiconductor Manufacturing Process

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Main Puteri Traditional Malay Healing Ceremony

This paper deals with the traditional Malay healing ritualistic ceremony known as Main Puteri. This non-invasive intervention uses the vehicle of performance to administer the healing process. It employs the performance elements of Makyung, that is, music, movements/dance and dramatic dialogue to heal psychosomatic maladies. There are two perspectives to this therapeutic healing process, one traditional and the other scientific. From the traditional perspective, the psychosomatic illness is attributed to the infestations/possessions by malevolent spirits. To heal such patients, these spirits must be exorcised through placating them by making offerings. From the scientific perspective, the music (sonic orders), movements (kinetic energy) and smell (olfactory) connect with the brain waves to release the chemicals that would activate the internal healing energy. Currently, in Main Puteri, the therapeutic healing ritual is no longer relevant as modern clinical medicine has proven to be more effective. Thus, Main Puteri is an anachronism in today’s technologically advanced Malaysia.

Multiscale Structures and Their Evolution in a Screen Cylinder Wake

The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been educed to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multiresolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequencyf0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d> 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses atx/d =10 before being taken over by the large-scale structures (f0) further downstream.

Accurate Modeling and Nonlinear Finite Element Analysis of a Flexible-Link Manipulator

Accurate dynamic modeling and analysis of flexible link manipulator (FLM) with non linear dynamics is very difficult due to distributed link flexibility and few studies have been conducted based on assumed modes method (AMM) and finite element models. In this paper a nonlinear dynamic model with first two elastic modes is derived using combined Euler/Lagrange and AMM approaches. Significant dynamics associated with the system such as hub inertia, payload, structural damping, friction at joints, combined link and joint flexibility are incorporated to obtain the complete and accurate dynamic model. The response of the FLM to the applied bang-bang torque input is compared against the models derived from LS-DYNA finite element discretization approach and linear finite element models. Dynamic analysis is conducted using LS-DYNA finite element model which uses the explicit time integration scheme to simulate the system. Parametric study is conducted to show the impact payload mass. A numerical result shows that the LS-DYNA model gives the smooth hub-angle profile.  

State of Human Factors in Small Manufacturing Sectors of India

Utmost care of human related issues are essentially required for sustainable growth of micro, small and medium enterprises (MSMEs) of India, as these MSMEs are contributing enormously to socio-economic development of country. In this research, aspects related to human factors and functioning of MSMEs of India were studied. The investigation, based on a survey of 84 MSMEs of India cited that the enterprises are mostly employing unskilled labor whose wages are less with poor training. In spite of reported minor accidents, attention towards safety is poorly paid. To meet-out the production target, MSMEs generally employ over-time and payment towards this overtime is sometimes missing. Hence, honest and humanitarian attention for better human resources is needed to improve the performance and competitiveness of MSMEs of India.

Development of Analytical Model of Bending Force during 3-Roller Conical Bending Process and Its Experimental Verification

Conical sections and shells made from metal plates are widely used in various industrial applications. 3-roller conical bending process is preferably used to produce such conical sections and shells. Bending mechanics involved in the process is complex and little work is done in this area. In the present paper an analytical model is developed to predict bending force which will be acting during 3-roller conical bending process. To verify the developed model, conical bending experiments are performed. Analytical results and experimental results were compared. Force predicted by analytical model is in close proximity of the experimental results. The error in the prediction is ±10%. Hence the model gives quite satisfactory results. Present model is also compared with the previously published bending force prediction model and it is found that the present model gives better results. The developed model can be used to estimate the bending force during 3-roller bending process and can be useful to the designers for designing the 3-roller conical bending machine.

Satisfaction Survey of a Displaced Population Affected by a New Planned Development of Naya Raipur, India

Urban planning is the need of the hour in a rapidly developing county like India. In essence, urban planning enhances the quality of land at a reasonable cost. Naya (New) Raipur is the new planned capital of the Indian state of Chhattisgarh, and is one of India’s few planned cities. Over the next decade it will drastically change the landscape of the state of Chhattisgarh. This new planned development is quintessential in growing this backward region and providing for future infrastructure. Key questions that arise are: How are people living in the surrounding region of New Raipur affected by its development? Are the affected people satisfied with compensation and rehabilitation that has been provided by the New Raipur Development Authority? To answer these questions, field research study in the form of questionnaires, interviews and site visits was conducted. To summarize the findings, while a majority of the surveyed population was dissatisfied with the rehabilitation and compensation provided by the New Raipur Development Authority, they were very positive about the success of the new development. Most thought that the new city would help their careers, improve job opportunities, improve prospects for their future generations, and benefit society as a whole. To improve rehabilitation schemes for the future, the reasons for the negative sentiment brewing amongst the villagers regarding the monetary compensation was investigated. Most villagers deemed the monetary compensation to be lacking as they had squandered their financial windfall already. With numerous interviews and site visits, it was discovered that the lump sum form of monetary compensation was to blame. With a huge sum of money received at once and a lack of financial education, many villagers squandered this newly gained money on unnecessary purchases such as alcohol and expensive vehicles without investing for the long run in farmland and education for their children. One recommendation proposed to the New Raipur Development Authority (NRDA) for future monetary compensation design in times of rehabilitating people was to provide payments in installments rather than lump sums and educate the people about investing the compensation money wisely. This would save them from wasting money they receive and the ensuing dissatisfaction of squandering that money.