Influence of Dynamic Loads in the Structural Integrity of Underground Rooms

Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.

Bold Headlines of Urban Eyescapes: A Computational Approach of Urban Mapping via Digital Surveying and Eye-Tracking Technologies

The sensory stimuli from the urban environment are often distinguished as subtle structures that derive from experiencing the city. The experience of the urban environment is also related to the social relationships and memories that complete the 'urban eyescapes' and the way individuals can recall them. Despite the fact that the consideration of urban sensory stimuli is part of urban design, currently the account of visual experience in urban studies is hard to be identified. This article explores ways of recording how the senses mediate one's engagement with the urban environment. This study involves an experiment in the urban environment of the Copenhagen city centre, with 20 subjects performing a walking task. The aim of the experiment is to categorize the visual 'Bold Headlined Stimuli’ (BHS) of the examined environment, using eye-tracking techniques. The analysis allows us to identify the Headlining Stimuli Process, (HSP) in the select urban environment. HSP is significantly mediated by body mobility and perceptual memories and has shown how urban stimuli influence the intelligibility and the recalling patterns of the urban characteristics. The results have yielded a 'Bold Headline list' of stimuli related to: the spatial characteristics of higher preference; the stimuli that are relevant to livability; and the spatial dimensions easier to recall. The data of BHS will be used in cross-disciplinary city analysis. In the future, these results could be useful in urban design, to provide information on how urban space affects the human activities.

Experimental Characterization of the Shear Behavior of Fiber Reinforced Concrete Beam Elements in Chips

This work deals with the experimental study of the mechanical behavior, by shear tests (fracture shear), elements of concrete beams reinforced with fibers in chips. These fibers come from the machining waste of the steel parts. The shear tests are carried out on prismatic specimens of dimensions 10 x 20 x 120 cm3. The fibers are characterized by mechanical resistance and tearing. The optimal composition of the concrete was determined by the workability test. Two fiber contents are selected for this study (W = 0.6% and W = 0.8%) and a BT control concrete (W = 0%) of the same composition as the matrix is developed to serve as a reference with a sand-to-gravel ratio (S/G) of concrete matrix equal to 1. The comparison of the different results obtained shows that the chips fibers confer a significant ductility to the material after cracking of the concrete. Also, the fibers used limit diagonal cracks in shear and improve strength and rigidity.

Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Inflammatory Markers in the Blood and Chronic Periodontitis

Background: Plasma levels of inflammatory markers are the expression of the infectious wastes of existing periodontitis, as well as of existing inflammation everywhere in the body. Materials and Methods: The study consists of the clinical part of the measurement of inflammatory markers of 23 patients diagnosed with chronic periodontitis and the recording of parental periodontal parameters of patient periodontal status: hemorrhage index and probe values, before and 7-10 days after non-surgical periodontal treatment. Results: The level of fibrinogen drops according to the categorization of disease progression, active and passive, with the biggest % (18%-30%) at the fluctuation 10-20 mg/d. Fluctuations in fibrinogen level according to the age of patients in the range 0-10 mg/dL under 40 years and over 40 years was 13%-26%, in the range 10-20 mg/dL was 26%-22%, in the 20-40 mg/dL was 9%-4%. Conclusions: Non-surgical periodontal treatment significantly reduces the level of non-inflammatory markers in the blood. Oral health significantly reduces the potential source for periodontal bacteria, with the potential of promoting thromboembolism, through interaction between thrombocytes.

Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR

Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties.

The Mechanism Underlying Empathy-Related Helping Behavior: An Investigation of Empathy-Attitude- Action Model

Empathy has been an important issue in psychology, education, as well as cognitive neuroscience. Empathy has two major components: cognitive and emotional. Cognitive component refers to the ability to understand others’ perspectives, thoughts, and actions, whereas emotional component refers to understand how others feel. Empathy can be induced, attitude can then be changed, and with enough attitude change, helping behavior can occur. This finding leads us to two questions: is attitude change really necessary for prosocial behavior? And, what roles cognitive and affective empathy play? For the second question, participants with different psychopathic personality (PP) traits are critical because high PP people were found to suffer only affective empathy deficit. Their cognitive empathy shows no significant difference from the control group. 132 college students voluntarily participated in the current three-stage study. Stage 1 was to collect basic information including Interpersonal Reactivity Index (IRI), Psychopathic Personality Inventory-Revised (PPI-R), Attitude Scale, Visual Analogue Scale (VAS), and demographic data. Stage two was for empathy induction with three controversial scenarios, namely domestic violence, depression with a suicide attempt, and an ex-offender. Participants read all three stories and then rewrite the stories by one of two perspectives (empathetic vs. objective). They would then complete the VAS and Attitude Scale one more time for their post-attitude and emotional status. Three IVs were introduced for data analysis: PP (High vs. Low), Responsibility (whether or not the character is responsible for what happened), and Perspective-taking (Empathic vs. Objective). Stage 3 was for the action. Participants were instructed to freely use the 17 tokens they received as donations. They were debriefed and interviewed at the end of the experiment. The major findings were people with higher empathy tend to take more action in helping. Attitude change is not necessary for prosocial behavior. The controversy of the scenarios and how familiar participants are towards target groups play very important roles. Finally, people with high PP tend to show more public prosocial behavior due to their affective empathy deficit. Pre-existing value and belief as well as recent dramatic social events seem to have a big impact and possibly reduce the effect of the independent variables (IV) in our paradigm.

Deployment of a Biocompatible International Space Station into Geostationary Orbit

This study explores the possibility of a space station that will occupy a geostationary equatorial orbit (GEO) and create artificial gravity using centripetal acceleration. The concept of the station is to create a habitable, safe environment that can increase the possibility of space tourism by reducing the wide variation of hazards associated with space exploration. The ability to control the intensity of artificial gravity through Hall-effect thrusters will allow experiments to be carried out at different levels of artificial gravity. A feasible prototype model was built to convey the concept and to enable cost estimation. The SpaceX Falcon Heavy rocket with a 26,700 kg payload to GEO was selected to take the 675 tonne spacecraft into orbit; space station construction will require up to 30 launches, this would be reduced to 5 launches when the SpaceX BFR becomes available. The estimated total cost of implementing the Sussex Biocompatible International Space Station (BISS) is approximately $47.039 billion, which is very attractive when compared to the cost of the International Space Station, which cost $150 billion.

Estimation of Crustal Thickness within the Sokoto Basin North-Western Nigeria Using Bouguer Gravity Anomaly Data

This research proposes an interpretation of the Bouguer’ gravity anomaly data of some parts of Sokoto basin for the estimation of crustal thickness. The study area is bounded between latitudes 1100′0″N and 1300′0″N, and longitudes 400′0″E and 600′0″E that covered Koko, Jega, B/Kebbi, Argungu, Lema, Bodinga, Tamgaza, Gunmi,Daki Takwas, Dange, Sokoto, Ilella, T/Mafara, Anka, Maru, Gusau, K/Namoda, and Sabon Birni within Sokoto, Kebbi and Zamfara state respectively. The established map of the study area was digitized in X, Y and Z format using excel software package and the digitized data were processed using Surfer version 13 software. The Moho and Conrad depths based on a relationship between Bouguer’ gravity anomaly determined crustal thickness were estimated as 35 to 37 km and 19 to 21 km, respectively. The crustal region has been categorized into: Crustal thinning zone that is the region with high gravity anomaly value due to its greater geothermal energy and also Crustal thickening zone which the region with low anomaly values due to its lower geothermal energy. Birnin kebbi, Jega, Sokoto were identified as the region of hydrocarbon potential with an estimate of 35 km thickness within the crustal region which is referred to as crustal thickening as a result of its low but sufficient geothermal energy to decompose organic matter within the region to form hydrocarbons.

Simulation and Design of an Aerospace Mission Powered by “Candy” Type Fuel Engines

Sounding rockets are aerospace vehicles that were developed in the mid-20th century, and since then numerous investigations have been executed with the aim of innovate in this type of technology. However, the costs associated to the production of this type of technology are usually quite high, and therefore the challenge that exists today is to be able to reduce them. In this way, the main objective of this document is to present the design process of a Colombian aerospace mission capable to reach the thermosphere using low-cost “Candy” type solid fuel engines. This mission is the latest development of the Uniandes Aerospace Project (PUA for its Spanish acronym), which is an undergraduate and postgraduate research group at Universidad de los Andes (Bogotá, Colombia), dedicated to incurring in this type of technology. In this way, the investigations that have been carried out on Candy-type solid fuel, which is a compound of potassium nitrate and sorbitol, have allowed the production of engines powerful enough to reach space, and which represents a unique technological advance in Latin America and an important development in experimental rocketry. In this way, following the engineering iterative design methodology was possible to design a 2-stage sounding rocket with 1 solid fuel engine in each one, which was then simulated in RockSim V9.0 software and reached an apogee of approximately 150 km above sea level. Similarly, a speed equal to 5 Mach was obtained, which after performing a finite element analysis, it was shown that the rocket is strong enough to be able to withstand such speeds. Under these premises, it was demonstrated that it is possible to build a high-power aerospace mission at low cost, using Candy-type solid fuel engines. For this reason, the feasibility of carrying out similar missions clearly depends on the ability to replicate the engines in the best way, since as mentioned above, the design of the rocket is adequate to reach supersonic speeds and reach space. Consequently, with a team of at least 3 members, the mission can be obtained in less than 3 months. Therefore, when publishing this project, it is intended to be a reference for future research in this field and benefit the industry.

Design of Polyetheretherketone Fixation Plates for Fractured Distal Femur

In the present study, a methodology has been proposed to treat fracture in the distal part of the femur bone. Initially, bone model has been developed using the computed tomography scan data of the fractured bone. This information has been further used to create polyether ether ketone (PEEK) implant for this fractured bone. Damaged bone and implant models have been assembled. This assembled model has been further analyzed for stress distribution. Moreover, deformation developed was also measured. It has been observed that the stress and deformation developed was not so appreciable. Thus, it proves that the aforementioned procedure can be suitably adopted for the treatment of fractured distal femur bone.

Influence of Environmental Temperature on Dairy Herd Performance and Behaviour

The objective of this study was to determine the effects of environmental stressors on the performance of lactating dairy cows and discuss some future trends. There exists a relationship between the meteorological data and milk yield prediction accuracy in pasture-based dairy systems. New precision technologies are available and are being developed to improve the sustainability of the dairy industry. Some of these technologies focus on welfare of individual animals on dairy farms. These technologies allow the automatic identification of animal behaviour and health events, greatly increasing overall herd health and yield while reducing animal health inspection demands and long-term animal healthcare costs. The data set consisted of records from 489 dairy cows at two dairy farms and temperature measured from the nearest meteorological weather station in 2018. The effects of temperature on milk production and behaviour of animals were analyzed. The statistical results indicate different effects of temperature on milk yield and behaviour. The “comfort zone” for animals is in the range 10 °C to 20 °C. Dairy cows out of this zone had to decrease or increase their metabolic heat production, and it affected their milk production and behaviour.

AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining

Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.

Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System

This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.

Physiological Effects during Aerobatic Flights on Science Astronaut Candidates

Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.

Realistic Simulation Methodology in Brazil’s New Medical Education Curriculum: Potentialities

Introduction: Brazil’s new national curriculum guidelines (NCG) for medical education were published in 2014, presenting active learning methodologies as a cornerstone. Simulation was initially applied for aviation pilots’ training and is currently applied in health sciences. The high-fidelity simulator replicates human body anatomy in detail, also reproducing physiological functions and its use is increasing in medical schools. Realistic Simulation (RS) has pedagogical aspects that are aligned with Brazil’s NCG teaching concepts. The main objective of this study is to carry on a narrative review on RS’s aspects that are aligned with Brazil’s new NCG teaching concepts. Methodology: A narrative review was conducted, with search in three databases (PubMed, Embase and BVS) of studies published between 2010 and 2020. Results: After systematized search, 49 studies were selected and divided into four thematic groups. RS is aligned with new Brazilian medical curriculum as it is an active learning methodology, providing greater patient safety, uniform teaching, and student's emotional skills enhancement. RS is based on reflective learning, a teaching concept developed for adult’s education. Conclusion: RS is a methodology aligned with NCG teaching concepts and has potential to assist in the implementation of new Brazilian medical school’s curriculum. It is an immersive and interactive methodology, which provides reflective learning in a safe environment for students and patients.

Effect of Wavy Leading-Edges on Wings in Different Planetary Atmospheres

Today we are unmarking the secrets of the universe by exploring different stars and planets and most of the space exploration is done by unmanned space robots. In addition to our planet Earth, there are pieces of evidence that show other astronomical objects in our solar system such as Venus, Mars, Saturn’s moon Titan and Uranus support the flight of fixed wing air vehicles. In this paper, we take forward the concept of presence of large rounded tubercles along the leading edge of a wing and use it as a passive flow control device that will help in improving its aerodynamic performance and maneuverability. Furthermore, in this research, aerodynamic measurements and performance analysis of wavy leading tubercles on the fixed wings at 5-degree angle of attack are carried out after determination of the flow conditions on the selected planetary bodies. Wavelength and amplitude for the sinusoidal modifications on the leading edge are analyzed and simulations are carried out for three-dimensional NACA 0012 airfoil maintaining unity AR (Aspect Ratio). Tubercles have consistently demonstrated the ability to delay and decrease the severity of stall as per the studies were done in the Earth’s atmosphere. Implementing the same design on the leading edges of Micro-Air Vehicles (MAVs) and UAVs could make these aircrafts more stable over a greater range of angles of attack in different planetary environments of our solar system.

University Curriculum Policy Processes in Chile: A Case Study

Located within the context of accelerating globalization in the 21st-century knowledge society, this paper focuses on one selected university in Chile at which radical curriculum policy changes have been taking place, diverging from the traditional curriculum in Chile at the undergraduate level as a section of a larger investigation. Using a ‘policy trajectory’ framework, and guided by the interpretivist approach to research, interview transcripts and institutional documents were analyzed in relation to the meso (university administration) and the micro (academics) level. Inside the case study, participants from the university administration and academic levels were selected both via snow-ball technique and purposive selection, thus they had different levels of seniority, with some participating actively in the curriculum reform processes. Guided by an interpretivist approach to research, documents and interview transcripts were analyzed to reveal major themes emerging from the data. A further ‘bigger picture’ analysis guided by critical theory was then undertaken, involving interrogation of underlying ideologies and how political and economic interests influence the cultural production of policy. The case-study university was selected because it represents a traditional and old case of university setting in the country, undergoing curriculum changes based on international trends such as the competency model and the liberal arts. Also, it is representative of a particular socioeconomic sector of the country. Access to the university was gained through email contact. Qualitative research methods were used, namely interviews and analysis of institutional documents. In all, 18 people were interviewed. The number was defined by when the saturation criterion was met. Semi-structured interview schedules were based on the four research questions about influences, policy texts, policy enactment and longer-term outcomes. Triangulation of information was used for the analysis. While there was no intention to generalize the specific findings of the case study, the results of the research were used as a focus for engagement with broader themes, often evident in global higher education policy developments. The research results were organized around major themes in three of the four contexts of the ‘policy trajectory’. Regarding the context of influences and the context of policy text production, themes relate to hegemony exercised by first world countries’ universities in the higher education field, its associated neoliberal ideology, with accountability and the discourse of continuous improvement, the local responses to those pressures, and the value of interdisciplinarity. Finally, regarding the context of policy practices and effects (enactment), themes emerged around the impacts of the curriculum changes on university staff, students, and resistance amongst academics. The research concluded with a few recommendations that potentially provide ‘food for thought’ beyond the localized settings of this study, as well as possibilities for further research.

Numerical Simulation of Different Configurations for a Combined Gasification/Carbonization Reactors

Gasification and carbonization are two of the most common ways for biomass utilization. Both processes are using part of the waste to be accomplished, either by incomplete combustion or for heating for both gasification and carbonization, respectively. The focus of this paper is to minimize the part of the waste that is used for heating biomass for gasification and carbonization. This will occur by combining both gasifiers and carbonization reactors in a single unit to utilize the heat in the product biogas to heating up the wastes in the carbonization reactors. Three different designs are proposed for the combined gasification/carbonization (CGC) reactor. These include a parallel combination of two gasifiers and carbonized syngas, carbonizer and combustion chamber, and one gasifier, carbonizer, and combustion chamber. They are tested numerically using ANSYS Fluent Computational Fluid Dynamics to ensure homogeneity of temperature distribution inside the carbonization part of the CGC reactor. 2D simulations are performed for the three cases after performing both mesh-size and time-step independent solutions. The carbonization part is common among the three different cases, and the difference among them is how this carbonization reactor is heated. The simulation results showed that the first design could provide only partial homogeneous temperature distribution, not across the whole reactor. This means that the produced carbonized biomass will be reduced as it will only fill a specified height of the reactor. To keep the carbonized product production high, a series combination is proposed. This series configuration resulted in a uniform temperature distribution across the whole reactor as it has only one source for heat with no temperature distribution on any surface of the carbonization section. The simulations provided a satisfactory result that either the first parallel combination of gasifier and carbonization reactor could be used with a reduced carbonized amount or a series configuration to keep the production rate high.

Learning Mandarin Chinese as a Foreign Language in a Bilingual Context: Adult Learners’ Perceptions of the Use of L1 Maltese and L2 English in Mandarin Chinese Lessons in Malta

The first language (L1) could be used in foreign language teaching and learning as a pedagogical tool to scaffold new knowledge in the target language (TL) upon linguistic knowledge that the learner already has. In a bilingual context, code-switching between the two languages usually occurs in classrooms. One of the reasons for code-switching is because both languages are used for scaffolding new knowledge. This research paper aims to find out why both the L1 (Maltese) and the L2 (English) are used in the classroom of Mandarin Chinese as a foreign language (CFL) in the bilingual context of Malta. This research paper also aims to find out the learners’ perceptions of the use of a bilingual medium of instruction. Two research methods were used to collect qualitative data; semi-structured interviews with adult learners of Mandarin Chinese and lesson observations. These two research methods were used so that the data collected in the interviews would be triangulated with data collected in lesson observations. The L1 (Maltese) is the language of instruction mostly used. The teacher and the learners switch to the L2 (English) or to any other foreign language according to the need at a particular instance during the lesson.