Carbon Dioxide Capture and Storage: A General Review on Adsorbents

CO2 is the primary anthropogenic greenhouse gas, accounting for 77% of the human contribution to the greenhouse effect in 2004. In the recent years, global concentration of CO2 in the atmosphere is increasing rapidly. CO2 emissions have an impact on global climate change. Anthropogenic CO2 is emitted primarily from fossil fuel combustion. Carbon capture and storage (CCS) is one option for reducing CO2 emissions. There are three major approaches for CCS: post-combustion capture, pre-combustion capture and oxyfuel process. Post-combustion capture offers some advantages as existing combustion technologies can still be used without radical changes on them. There are several post combustion gas separation and capture technologies being investigated, namely; (a) absorption, (b) cryogenic separation, (c) membrane separation (d) micro algal biofixation and (e) adsorption. Apart from establishing new techniques, the exploration of capture materials with high separation performance and low capital cost are paramount importance. However, the application of adsorption from either technology, require easily regenerable and durable adsorbents with a high CO2 adsorption capacity. It has recently been reported that the cost of the CO2 capture can be reduced by using this technology. In this paper, the research progress (from experimental results) in adsorbents for CO2 adsorption, storage, and separations were reviewed and future research directions were suggested as well.

Automatic Reusability Appraisal of Software Components using Neuro-fuzzy Approach

Automatic reusability appraisal could be helpful in evaluating the quality of developed or developing reusable software components and in identification of reusable components from existing legacy systems; that can save cost of developing the software from scratch. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. In this paper, we have mentioned two-tier approach by studying the structural attributes as well as usability or relevancy of the component to a particular domain. Latent semantic analysis is used for the feature vector representation of various software domains. It exploits the fact that FeatureVector codes can be seen as documents containing terms -the idenifiers present in the components- and so text modeling methods that capture co-occurrence information in low-dimensional spaces can be used. Further, we devised Neuro- Fuzzy hybrid Inference System, which takes structural metric values as input and calculates the reusability of the software component. Decision tree algorithm is used to decide initial set of fuzzy rules for the Neuro-fuzzy system. The results obtained are convincing enough to propose the system for economical identification and retrieval of reusable software components.

On Face Recognition using Gabor Filters

Gabor-based face representation has achieved enormous success in face recognition. This paper addresses a novel algorithm for face recognition using neural networks trained by Gabor features. The system is commenced on convolving a face image with a series of Gabor filter coefficients at different scales and orientations. Two novel contributions of this paper are: scaling of rms contrast and introduction of fuzzily skewed filter. The neural network employed for face recognition is based on the multilayer perceptron (MLP) architecture with backpropagation algorithm and incorporates the convolution filter response of Gabor jet. The effectiveness of the algorithm has been justified over a face database with images captured at different illumination conditions.

Some Reflexions on the Selfunderstanding of the Kazakh People: A Way of Building Identity in the Modern World

This article explores the self-identity of the Kazakh people by way of identifying the roots of self-understanding in Kazakh culture. Unfortunately, Western methods of ethno psychology cannot fully capture what is unique about identity in Kazakh culture. Although Kazakhstan is the ninth largest country in terms of geographical space, Kazakh cultural identity is not wellknown in the West. In this article we offer an account of the national psychological features of the Kazakh people, in order to reveal the spiritual, mental, ethical dimensions of modern Kazakhs. These factors play a central role in the revival of forms of identity that are central to the Kazakh people.

Financial Analysis Analogies for Software Risk

A dynamic software risk assessment model is presented. Analogies between dynamic financial analysis and software risk assessment models are established and based on these analogies it suggested that dynamic risk model for software projects is the way to move forward for the risk assessment of software project. It is shown how software risk assessment change during different phases of a software project and hence requires a dynamic risk assessment model to capture these variations. Further evolution of dynamic financial analysis models is discussed and mapped to the evolution of software risk assessment models.

The Use of Complex Contourlet Transform on Fusion Scheme

Image fusion aims to enhance the perception of a scene by combining important information captured by different sensors. Dual-Tree Complex Wavelet (DT-CWT) has been thouroughly investigated for image fusion, since it takes advantages of approximate shift invariance and direction selectivity. But it can only handle limited direction information. To allow a more flexible directional expansion for images, we propose a novel fusion scheme, referred to as complex contourlet transform (CCT). It successfully incorporates directional filter banks (DFB) into DT-CWT. As a result it efficiently deal with images containing contours and textures, whereas it retains the property of shift invariance. Experimental results demonstrated that the method features high quality fusion performance and can facilitate many image processing applications.

Ignition Delay Correlation for a Direct Injection Diesel Engine Fuelled with Automotive Diesel and Water Diesel Emulsion

Most of ignition delay correlations studies have been developed in a constant volume bombs which cannot capture the dynamic variation in pressure and temperature during the ignition delay as in real engines. Watson, Assanis et. al. and Hardenberg and Hase correlations have been developed based on experimental data of diesel engines. However, they showed limited predictive ability of ignition delay when compared to experimental results. The objective of the study was to investigate the dependency of ignition delay time on engine brake power. An experimental investigation of the effect of automotive diesel and water diesel emulsion fuels on ignition delay under steady state conditions of a direct injection diesel engine was conducted. A four cylinder, direct injection naturally aspirated diesel engine was used in this experiment over a wide range of engine speeds and two engine loads. The ignition delay experimental data were compared with predictions of Assanis et. al. and Watson ignition delay correlations. The results of the experimental investigation were then used to develop a new ignition delay correlation. The newly developed ignition delay correlation has shown a better agreement with the experimental data than Assanis et. al. and Watson when using automotive diesel and water diesel emulsion fuels especially at low to medium engine speeds at both loads. In addition, the second derivative of cylinder pressure which is the most widely used method in determining the start of combustion was investigated.

Effective Scheduling of Semiconductor Manufacturing using Simulation

The process of wafer fabrication is arguably the most technologically complex and capital intensive stage in semiconductor manufacturing. This large-scale discrete-event process is highly reentrant, and involves hundreds of machines, restrictions, and processing steps. Therefore, production control of wafer fabrication facilities (fab), specifically scheduling, is one of the most challenging problems that this industry faces. Dispatching rules have been extensively applied to the scheduling problems in semiconductor manufacturing. Moreover, lot release policies are commonly used in this manufacturing setting to further improve the performance of such systems and reduce its inherent variability. In this work, simulation is used in the scheduling of re-entrant flow shop manufacturing systems with an application in semiconductor wafer fabrication; where, a simulation model has been developed for the Intel Five-Machine Six Step Mini-Fab using the ExtendTM simulation environment. The Mini-Fab has been selected as it captures the challenges involved in scheduling the highly re-entrant semiconductor manufacturing lines. A number of scenarios have been developed and have been used to evaluate the effect of different dispatching rules and lot release policies on the selected performance measures. Results of simulation showed that the performance of the Mini-Fab can be drastically improved using a combination of dispatching rules and lot release policy.

Sensorless Sliding Power Control of Doubly Fed Induction Wind Generator Based on MRAS Observer

In this paper present a sensorless maximum wind power extraction for variable speed constant frequency (VSCF) wind power generation systems with a doubly-fed induction generators (DFIG), to ensure stability and to impose the ideal feedback control solution despite of model uncertainties , using the principles of an active and reactive power controller (DPC) a robust sliding mode power control has been proposed to guarantees fast response times and precise control actions for control the active and reactive power independently. The simulation results in MATLAB/Simulink platform confirmed the good dynamic performance of power control approach for DFIGbased variable speed wind turbines.

Business Process Orientation: Case of Croatia

Because of the increasing business pressures, companies must be adaptable and flexible in order to withstand them. Inadequate business processes and low level of business process orientation, that in its core accentuates business processes as opposed to business functions and focuses on process performance and customer satisfaction, hider the ability to adapt to changing environment. It has been shown in previous studies that the companies which have reached higher business process maturity level consistently outperform those that have not reached them. The aim of this paper is to provide a basic understanding of business process orientation concept and business process maturity model. Besides that the paper presents the state of business process orientation in Croatia that has been captured with a study conducted in 2013. Based on the results some practical implications and guidelines for managers are given.

Introducing an Image Processing Base Idea for Outdoor Children Caring

In this paper application of artificial intelligence for baby and children caring is studied. Then a new idea for injury prevention and safety announcement is presented by using digital image processing. The paper presents the structure of the proposed system. The system determines the possibility of the dangers for children and babies in yards, gardens and swimming pools or etc. In the presented idea, multi camera System is used and receiver videos are processed to find the hazardous areas then the entrance of children and babies in the determined hazardous areas are analyzed. In this condition the system does the programmed action capture, produce alarm or tone or send message.

A Stereo Image Processing System for Visually Impaired

This paper presents a review on vision aided systems and proposes an approach for visual rehabilitation using stereo vision technology. The proposed system utilizes stereo vision, image processing methodology and a sonification procedure to support blind navigation. The developed system includes a wearable computer, stereo cameras as vision sensor and stereo earphones, all moulded in a helmet. The image of the scene infront of visually handicapped is captured by the vision sensors. The captured images are processed to enhance the important features in the scene in front, for navigation assistance. The image processing is designed as model of human vision by identifying the obstacles and their depth information. The processed image is mapped on to musical stereo sound for the blind-s understanding of the scene infront. The developed method has been tested in the indoor and outdoor environments and the proposed image processing methodology is found to be effective for object identification.

Solid Circulation Rate and Gas Leakage Measurements in an Interconnected Bubbling Fluidized Beds

Two-interconnected fluidized bed systems are widely used in various processes such as Fisher-Tropsch, hot gas desulfurization, CO2 capture-regeneration with dry sorbent, chemical-looping combustion, sorption enhanced steam methane reforming, chemical-looping hydrogen generation system, and so on. However, most of two-interconnected fluidized beds systems require riser and/or pneumatic transport line for solid conveying and loopseals or seal-pots for gas sealing, recirculation of solids to the riser, and maintaining of pressure balance. The riser (transport bed) is operated at the high velocity fluidization condition and residence times of gas and solid in the riser are very short. If the reaction rate of catalyst or sorbent is slow, the riser can not ensure sufficient contact time between gas and solid and we have to use two bubbling beds for each reaction to ensure sufficient contact time. In this case, additional riser must be installed for solid circulation. Consequently, conventional two-interconnected fluidized bed systems are very complex, large, and difficult to operate. To solve these problems, a novel two-interconnected fluidized bed system has been developed. This system has two bubbling beds, solid injection nozzles, solid conveying lines, and downcomers. In this study, effects of operating variables on solid circulation rate, gas leakage between two beds have been investigated in a cold mode two-interconnected fluidized bed system. Moreover, long-term operation of continuous solid circulation up to 60 hours has been performed to check feasibility of stable operation.

Modeling Stress-Induced Regulatory Cascades with Artificial Neural Networks

Yeast cells live in a constantly changing environment that requires the continuous adaptation of their genomic program in order to sustain their homeostasis, survive and proliferate. Due to the advancement of high throughput technologies, there is currently a large amount of data such as gene expression, gene deletion and protein-protein interactions for S. Cerevisiae under various environmental conditions. Mining these datasets requires efficient computational methods capable of integrating different types of data, identifying inter-relations between different components and inferring functional groups or 'modules' that shape intracellular processes. This study uses computational methods to delineate some of the mechanisms used by yeast cells to respond to environmental changes. The GRAM algorithm is first used to integrate gene expression data and ChIP-chip data in order to find modules of coexpressed and co-regulated genes as well as the transcription factors (TFs) that regulate these modules. Since transcription factors are themselves transcriptionally regulated, a three-layer regulatory cascade consisting of the TF-regulators, the TFs and the regulated modules is subsequently considered. This three-layer cascade is then modeled quantitatively using artificial neural networks (ANNs) where the input layer corresponds to the expression of the up-stream transcription factors (TF-regulators) and the output layer corresponds to the expression of genes within each module. This work shows that (a) the expression of at least 33 genes over time and for different stress conditions is well predicted by the expression of the top layer transcription factors, including cases in which the effect of up-stream regulators is shifted in time and (b) identifies at least 6 novel regulatory interactions that were not previously associated with stress-induced changes in gene expression. These findings suggest that the combination of gene expression and protein-DNA interaction data with artificial neural networks can successfully model biological pathways and capture quantitative dependencies between distant regulators and downstream genes.

Markov Chain Monte Carlo Model Composition Search Strategy for Quantitative Trait Loci in a Bayesian Hierarchical Model

Quantitative trait loci (QTL) experiments have yielded important biological and biochemical information necessary for understanding the relationship between genetic markers and quantitative traits. For many years, most QTL algorithms only allowed one observation per genotype. Recently, there has been an increasing demand for QTL algorithms that can accommodate more than one observation per genotypic distribution. The Bayesian hierarchical model is very flexible and can easily incorporate this information into the model. Herein a methodology is presented that uses a Bayesian hierarchical model to capture the complexity of the data. Furthermore, the Markov chain Monte Carlo model composition (MC3) algorithm is used to search and identify important markers. An extensive simulation study illustrates that the method captures the true QTL, even under nonnormal noise and up to 6 QTL.

Analytical Camera Model Supplemented with Influence of Temperature Variations

A camera in the building site is exposed to different weather conditions. Differences between images of the same scene captured with the same camera arise also due to temperature variations. The influence of temperature changes on camera parameters were modelled and integrated into existing analytical camera model. Modified camera model enables quantitatively assessing the influence of temperature variations.

An Enhanced Key Management Scheme Based on Key Infection in Wireless Sensor Networks

We propose an enhanced key management scheme based on Key Infection, which is lightweight scheme for tiny sensors. The basic scheme, Key Infection, is perfectly secure against node capture and eavesdropping if initial communications after node deployment is secure. If, however, an attacker can eavesdrop on the initial communications, they can take the session key. We use common neighbors for each node to generate the session key. Each node has own secret key and shares it with its neighbor nodes. Then each node can establish the session key using common neighbors- secret keys and a random number. Our scheme needs only a few communications even if it uses neighbor nodes- information. Without losing the lightness of basic scheme, it improves the resistance against eavesdropping on the initial communications more than 30%.

Physico-chemical State of the Air at the Stagnation Point during the Atmospheric Reentry of a Spacecraft

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermal phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body, especially at the stagnation point and along the wall of spacecraft for several altitudes. This allows the capture shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of 10-8

Non-destructive Watermelon Ripeness Determination Using Image Processing and Artificial Neural Network (ANN)

Agriculture products are being more demanding in market today. To increase its productivity, automation to produce these products will be very helpful. The purpose of this work is to measure and determine the ripeness and quality of watermelon. The textures on watermelon skin will be captured using digital camera. These images will be filtered using image processing technique. All these information gathered will be trained using ANN to determine the watermelon ripeness accuracy. Initial results showed that the best model has produced percentage accuracy of 86.51%, when measured at 32 hidden units with a balanced percentage rate of training dataset.

Thermal and Visual Performance of Solar Control Film

The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.