Impacts of Financial Development and Operating Scale on Bank Efficiencies in Taiwan

This paper adopts a two-stage data envelopment analysis to explore the impacts of financial development and bank operating scale on bank efficiencies. The sample comprises unbalanced panel data of 32 Taiwanese listed domestic commercial banks over the period 1998 to 2013. Empirical results show that pure technical efficiency is positively related to financial development, whereas the effect of financial development on scale efficiency is insignificant. Enlargement of bank operating scale improves bank efficiencies, but the efficiency gains are decreased gradually when the scale increases. Increases in capital adequacy ratio and market power of loans lead into a growth of bank efficiencies.

Roller Compacting Concrete “RCC” in Dams

Rehabilitation of dam components such as foundations, buttresses, spillways and overtopping protection require a wide range of construction and design methodologies. Geotechnical Engineering considerations play an important role in the design and construction of foundations of new dams. Much investigation is required to assess and evaluate the existing dams. The application of roller compacting concrete (RCC) has been accepted as a new method for constructing new dams or rehabilitating old ones. In the past 40 years there have been so many changes in the usage of RCC and now it is one of most satisfactory solutions of water and hydropower resource throughout the world. The considerations of rehabilitation and construction of dams might differ due to upstream reservoir and its influence on penetrating and dewatering of downstream, operations requirements and plant layout. One of the advantages of RCC is its rapid placement which allows the dam to be operated quickly. Unlike ordinary concrete it is a drier mix, and stiffs enough for compacting by vibratory rollers. This paper evaluates some different aspects of RCC and focuses on its preparation progress.

The Analysis of Internet and Social Media Behaviors of the Students in the Higher School of Vocational and Technical Sciences

Our globalizing world has become almost a small village and everyone can access any information at any time. Everyone lets each other know who does whatever in which place. We can learn which social events occur in which place in the world. From the perspective of education, the course notes that a lecturer use in lessons in a university in any state of America can be examined by a student studying in a city of Africa or the Far East. This dizzying communication we have mentioned happened thanks to fast developments in computer and internet technologies. While these developments occur in the world, Turkey that has a very large young population and whose electronic infrastructure rapidly improves has also been affected by these developments. Nowadays, mobile devices have become common and thus, it causes to increase data traffic in social networks. This study was carried out on students in the different age groups in Selcuk University Vocational School of Technical Sciences, the Department of Computer Technology. Students’ opinions about the use of internet and social media were obtained. The features such as using the Internet and social media skills, purposes, operating frequency, accessing facilities and tools, social life and effects on vocational education and so forth were explored. The positive effects and negative effects of both internet and social media use on the students in this department and findings are evaluated from different perspectives and results are obtained. In addition, relations and differences were found out statistically.

Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB – Technical University of Ostrava

The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB – Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.

Efficiency for Sustainable Growth: Evidence from the North African Countries

Improved resource efficiency of production is a key requirement for sustainable growth, worldwide. In this regards, by considering the energy and tourism as the extra inputs to the classical Coub-Douglas production function, this study aims at investigating the efficiency changes in the North African countries. To this end, the study uses panel data for the period 1995-2010 and adopts the Malmquist index based on the data envelopment analysis. Results show that tourism increases technical and scale efficiencies, while it decreases technological and total factor productivity changes. On the other hand, when the production function is augmented by the energy input; technical efficiency change decreases, while the technological change, scale efficiency change and total factor productivity change increase. Thus, in order to satisfy the needs for sustainable growth, North African governments should take some measures for increasing the contribution that the tourism makes to economic growth and some others for efficient use of resources in the energy sector.

Efficient Utilization of Commodity Computers in Academic Institutes: A Cloud Computing Approach

Cloud computing is a new technology in industry and academia. The technology has grown and matured in last half decade and proven their significant role in changing environment of IT infrastructure where cloud services and resources are offered over the network. Cloud technology enables users to use services and resources without being concerned about the technical implications of technology. There are substantial research work has been performed for the usage of cloud computing in educational institutes and majority of them provides cloud services over high-end blade servers or other high-end CPUs. However, this paper proposes a new stack called “CiCKAStack” which provide cloud services over unutilized computing resources, named as commodity computers. “CiCKAStack” provides IaaS and PaaS using underlying commodity computers. This will not only increasing the utilization of existing computing resources but also provide organize file system, on demand computing resource and design and development environment.

Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria

An innovative concept called “Flexy-Energy” is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energy sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel Diesel generators and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel Diesel generators. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand.This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.

Various Advanced Statistical Analyses of Index Values Extracted from Outdoor Agricultural Workers Motion Data

We have been grouping and developing various kinds of practical, promising sensing applied systems concerning agricultural advancement and technical tradition (guidance). These include advanced devices to secure real-time data related to worker motion, and we analyze by methods of various advanced statistics and human dynamics (e.g. primary component analysis, Ward system based cluster analysis, and mapping). What is more, we have been considering worker daily health and safety issues. Targeted fields are mainly common farms, meadows, and gardens. After then, we observed and discussed time-line style, changing data. And, we made some suggestions. The entire plan makes it possible to improve both the aforementioned applied systems and farms.

The Strategies for Teaching Digital Art in the Classroom as a Way of Enhancing Pupils’ Artistic Creativity

Teaching art by digital means is a big challenge for the majority of teachers of art and design in primary schools, yet it allows relationships between art, technology and creativity to be clearly identified. The aim of this article is to present a modern way of teaching art, using digital tools in the art classroom to improve creative ability in pupils aged between nine and eleven years. It also presents a conceptual model for creativity based on digital art. The model could be useful for pupils interested in learning to draw by using an e-drawing package, and for teachers who are interested in teaching modern digital art in order to improve children’s creativity. By illustrating the strategy of teaching art through technology, this model may also help education providers to make suitable choices about which technological approaches are most effective in enhancing students’ creative ability, and which digital art tools can benefit children by developing their technical skills. It is also expected that use of this model will help to develop skills of social interaction, which may in turn improve intellectual ability.

Use of Life Cycle Data for Condition-Oriented Maintenance

This technical contribution treats of a novel approach to condition-oriented maintenance as elaborated by Collaborative Research Centre 653 at the Leibniz University in Hanover. The objective resides in the targeted analysis of information about a component's lifecycle for maintenance purposes. The information in question is collected by means of the Collaborative Research Centre's innovative technologies. This enables preventive maintenance of components on the basis of their condition. This contribution initially explains condition-oriented maintenance, before introducing the Collaborative Research Centre and finally presenting the methodology for analyzing the information. The current state of development is described and an outlook provided for expanding the methodology.

A Robust Implementation of a Building Resources Access Rights Management System

A Smart Building Controller (SBC) is a server software that offers secured access to a pool of building specific resources, executes monitoring tasks and performs automatic administration of a building, thus optimizing the exploitation cost and maximizing comfort. This paper brings to discussion the issues that arise with the secure exploitation of the SBC administered resources and proposes a technical solution to implement a robust secure access system based on roles, individual rights and privileges (special rights).

A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study

The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two wellknown scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a casestudy. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means, which allows simulating the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With this model is possible to obtain quite accurate and reliable results that allow identifying effective combinations building-HVAC system. The second step has consisted of using output data obtained as input to the calculation model, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing determining the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while our calculation model provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model for different design options.

The Relationship between Absorptive Capacity and Green Innovation

Absorptive capacity generally facilitates the adoption of innovation. How does this relationship change when economic return is not the sole driver of innovation uptake? We investigate whether absorptive capacity facilitates the adoption of green innovation based on a survey of 79 construction companies in Scotland. Based on the results of multiple regression analyses, we confirm that existing knowledge utilisation (EKU), knowledge building (KB) and external knowledge acquisition (EKA) are significant predictors of green process GP), green administrative (GA) and green technical innovation (GT), respectively. We discuss the implications for theories of innovation adoption and knowledge enhancement associated with environmentally-friendly practices.

Barriers to Competitive Tenders in Building Conservation Works

Conservation works in Malaysia that is procured by public organisation usually follow the traditional approach where the works are tendered based on Bills of Quantities (BQ). One of the purposes of tendering is to enable the selection of a competent contractor that offers a competitive price. While competency of the contractors are assessed by their technical knowledge, experience and track records, the assessment of pricing will be dependent on the tender amount. However, the issue currently faced by the conservation works sector is the difficulty in assessing the competitiveness and reasonableness of the tender amount due to the high variance between the tenders amount. Thus, this paper discusses the factors that cause difficulty to the tenderers in pricing competitively in a bidding exercise for conservation tenders. Data on tendering is collected from interviews with conservation works contractors to gain in-depth understanding of the barriers faced in pricing tenders of conservation works. Findings from the study lent support to the contention that the variance of tender amount is very high amongst tenderers. The factors identified in the survey are the format of BQ, hidden works, experience and labour and material costs.

Social Assistive Robots, Reframing the Human Robotics Interaction Benchmark of Social Success

It is likely that robots will cross the boundaries of industry into households over the next decades. With demographic challenges worldwide, the future ageing populations will require the introduction of assistive technologies capable of providing, care, human dignity and quality of life through the aging process. Robotics technology has a high potential for being used in the areas of social and healthcare by promoting a wide range of activities such as entertainment, companionship, supervision or cognitive and physical assistance. However such close Human Robotics Interaction (HRI) encompass a rich set of ethical scenarios that need to be addressed before Socially Assistive Robots (SARs) reach the global markets. Such interactions with robots may seem a worthy goal for many technical/financial reasons but inevitably require close attention to the ethical dimensions of such interactions. This article investigates the current HRI benchmark of social success. It revises it according to the ethical principles of beneficence, non-maleficence and justice aligned with social care ethos. An extension of such benchmark is proposed based on an empirical study of HRIs conducted with elderly groups.

Comparison of Different Data Acquisition Techniques for Shape Optimization Problems

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. For example rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.

A Novel Framework for User-Friendly Ontology-Mediated Access to Relational Databases

A large amount of data is typically stored in relational databases (DB). The latter can efficiently handle user queries which intend to elicit the appropriate information from data sources. However, direct access and use of this data requires the end users to have an adequate technical background, while they should also cope with the internal data structure and values presented. Consequently the information retrieval is a quite difficult process even for IT or DB experts, taking into account the limited contributions of relational databases from the conceptual point of view. Ontologies enable users to formally describe a domain of knowledge in terms of concepts and relations among them and hence they can be used for unambiguously specifying the information captured by the relational database. However, accessing information residing in a database using ontologies is feasible, provided that the users are keen on using semantic web technologies. For enabling users form different disciplines to retrieve the appropriate data, the design of a Graphical User Interface is necessary. In this work, we will present an interactive, ontology-based, semantically enable web tool that can be used for information retrieval purposes. The tool is totally based on the ontological representation of underlying database schema while it provides a user friendly environment through which the users can graphically form and execute their queries.

Liberation as a Method for Monument Valorisation: The Case of the Defence Heritage Restoration

The practice of freeing monuments from subsequent additions crosses the entire history of conservation and it is traditionally connected to the aim of valorisation, both for cultural and educational purpose and recently even for touristic exploitation. Defence heritage has been widely interested by these cultural and technical moods from philological restoration to critic innovations. A renovated critical analysis of Italian episodes and in particular the Sardinian case of the area of San Pancrazio in Cagliari, constitute an important lesson about the limits of this practice and the uncertainty in terms of results, towards the definition of a sustainable good practice in the restoration of military architectures.

Feasibility Study and Developing Appropriate Hybrid Energy Systems in Regional Level

Iran has several potential for using renewable energies, so use them could significantly contribute to energy supply. The purpose of this paper is to identify the potential of the country and select the appropriate DG technologies with consideration the potential and primary energy resources in the regions. In this context, hybrid energy systems proportionate with the potential of different regions will be determined based on technical, economic, and environmental aspect. In the following the proposed structure will be optimized in terms of size and cost. DG technologies used in this project include photovoltaic system, wind turbine, diesel generator and battery bank. The HOMER software is applied for choosing the appropriate structure and the optimization of system sizing. The results have been analyzed in terms of technical and economic. The performance and the cost of each project demonstrate the appropriate structure of hybrid energy system in that region.

Prediction of California Bearing Ratio from Physical Properties of Fine-Grained Soils

The California Bearing Ratio (CBR) has been acknowledged as an important parameter to characterize the bearing capacity of earth structures, such as earth dams, road embankments, airport runways, bridge abutments and pavements. Technically, the CBR test can be carried out in the laboratory or in the field. The CBR test is time-consuming and is infrequently performed due to the equipment needed and the fact that the field moisture content keeps changing over time. Over the years, many correlations have been developed for the prediction of CBR by various researchers, including the dynamic cone penetrometer, undrained shear strength and Clegg impact hammer. This paper reports and discusses some of the results from a study on the prediction of CBR. In the current study, the CBR test was performed in the laboratory on some finegrained subgrade soils collected from various locations in Victoria. Based on the test results, a satisfactory empirical correlation was found between the CBR and the physical properties of the experimental soils.