Reliability Analysis of Underground Pipelines Using Subset Simulation

An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.

CFD Simulation the Thermal-Hydraulic Characteristic within Fuel Rod Bundle near Grid Spacers

This paper looks into detailed investigation of thermal-hydraulic characteristics of the flow field in a fuel rod model, especially near the spacer. The area investigate represents a source of information on the velocity flow field, vortex, and on the amount of heat transfer into the coolant all of which are critical for the design and improvement of the fuel rod in nuclear power plants. The flow field investigation uses three-dimensional Computational Fluid Dynamics (CFD) with the Reynolds stresses turbulence model (RSM). The fuel rod model incorporates a vertical annular channel where three different shapes of spacers are used; each spacer shape is addressed individually. These spacers are mutually compared in consideration of heat transfer capabilities between the coolant and the fuel rod model. The results are complemented with the calculated heat transfer coefficient in the location of the spacer and along the stainless-steel pipe.

Carbon Dioxide Removal from Flue Gas Using Amine-Based Hybrid Solvent Absorption

This study was to investigate the performance of hybrid solvents blended between primary, secondary, or tertiary amines and piperazine (PZ) for CO2 removal from flue gas in terms of CO2 absorption capacity and regeneration efficiency at 90 oC. Alkanolamines used in this work were monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA). The CO2 absorption was experimentally examined under atmospheric pressure and room temperature. The results show that MEA blend with PZ provided the maximum CO2 absorption capacity of 0.50 mol CO2/mol amine while TEA provided the minimum CO2 absorption capacity of 0.30 mol CO2/mol amine. TEA was easier to regenerate for both first cycle and second cycle with less loss of absorption capacity. The regeneration efficiency of TEA was 95.09 and 92.89 %, for the first and second generation cycles, respectively.

Feature Based Dense Stereo Matching using Dynamic Programming and Color

This paper presents a new feature based dense stereo matching algorithm to obtain the dense disparity map via dynamic programming. After extraction of some proper features, we use some matching constraints such as epipolar line, disparity limit, ordering and limit of directional derivative of disparity as well. Also, a coarseto- fine multiresolution strategy is used to decrease the search space and therefore increase the accuracy and processing speed. The proposed method links the detected feature points into the chains and compares some of the feature points from different chains, to increase the matching speed. We also employ color stereo matching to increase the accuracy of the algorithm. Then after feature matching, we use the dynamic programming to obtain the dense disparity map. It differs from the classical DP methods in the stereo vision, since it employs sparse disparity map obtained from the feature based matching stage. The DP is also performed further on a scan line, between any matched two feature points on that scan line. Thus our algorithm is truly an optimization method. Our algorithm offers a good trade off in terms of accuracy and computational efficiency. Regarding the results of our experiments, the proposed algorithm increases the accuracy from 20 to 70%, and reduces the running time of the algorithm almost 70%.

Characteristics Analysis of Thermal Resistance of Cryogenic Pipeline in Vacuum Environment

If an unsteady heat transfer or heat impulse happens in part of the cryogenic pipeline system of large space environment simulation equipment while running in vacuum environment, it will lead to abnormal flow of the cryogenic fluid in the pipeline. When the situation gets worse, the cryogenic fluid in the pipeline will have phase change and a gas block which results in the malfunction of the cryogenic pipeline system. Referring to the structural parameter of a typical cryogenic pipeline system and the basic equation, an analytical model and a calculation model for cryogenic pipeline system can be built. The various factors which influence the thermal resistance of a cryogenic pipeline system can be analyzed and calculated by using the qualitative analysis relation deduced for thermal resistance of pipeline. The research conclusion could provide theoretical support for the design and operation of a cryogenic pipeline system

Health Risk Assessment for Sewer Workers using Bayesian Belief Networks

The sanitary sewerage connection rate becomes an important indicator of advanced cities. Following the construction of sanitary sewerages, the maintenance and management systems are required for keeping pipelines and facilities functioning well. These maintenance tasks often require sewer workers to enter the manholes and the pipelines, which are confined spaces short of natural ventilation and full of hazardous substances. Working in sewers could be easily exposed to a risk of adverse health effects. This paper proposes the use of Bayesian belief networks (BBN) as a higher level of noncarcinogenic health risk assessment of sewer workers. On the basis of the epidemiological studies, the actual hospital attendance records and expert experiences, the BBN is capable of capturing the probabilistic relationships between the hazardous substances in sewers and their adverse health effects, and accordingly inferring the morbidity and mortality of the adverse health effects. The provision of the morbidity and mortality rates of the related diseases is more informative and can alleviate the drawbacks of conventional methods.

In vivo Antidiabetic and Antioxidant Potential of Pseudovaria macrophylla Extract

This study has investigated the antidiabetic and antioxidant potential of Pseudovaria macrophylla bark extract on streptozotocin–nicotinamide induced type 2 diabetic rats. LCMSQTOF and NMR experiments were done to determine the chemical composition in the methanolic bark extract. For in vivo experiments, the STZ (60 mg/kg/b.w, 15 min after 120 mg/kg/1 nicotinamide, i.p.) induced diabetic rats were treated with methanolic extract of Pseuduvaria macrophylla (200 and 400 mg/kg·bw) and glibenclamide (2.5 mg/kg) as positive control respectively. Biochemical parameters were assayed in the blood samples of all groups of rats. The pro-inflammatory cytokines, antioxidant status and plasma transforming growth factor βeta-1 (TGF-β1) were evaluated. The histological study of the pancreas was examined and its expression level of insulin was observed by immunohistochemistry. In addition, the expression of glucose transporters (GLUT 1, 2 and 4) were assessed in pancreas tissue by western blot analysis. The outcomes of the study displayed that the bark methanol extract of Pseuduvaria macrophylla has potentially normalized the elevated blood glucose levels and improved serum insulin and C-peptide levels with significant increase in the antioxidant enzyme, reduced glutathione (GSH) and decrease in the level of lipid peroxidation (LPO). Additionally, the extract has markedly decreased the levels of serum pro-inflammatory cytokines and transforming growth factor beta-1 (TGF-β1). Histopathology analysis demonstrated that Pseuduvaria macrophylla has the potential to protect the pancreas of diabetic rats against peroxidation damage by downregulating oxidative stress and elevated hyperglycaemia. Furthermore, the expression of insulin protein, GLUT-1, GLUT-2 and GLUT-4 in pancreatic cells was enhanced. The findings of this study support the anti-diabetic claims of Pseudovaria macrophylla bark.

Dynamic Performances of Tubular Linear Induction Motor for Pneumatic Capsule Pipeline System

Tubular linear induction motor (TLIM) can be used as a capsule pump in a large pneumatic capsule pipeline (PCP) system. Parametric performance evaluation of the designed 1-meter diameter PCP-TLIM system yields encouraging results for practical implementation. The capsule thrust and speed inside the TLIM pump can be calculated from the combination of the PCP fluid mechanics and the TLIM equations. The TLIM equivalent circuits derived from those of the conventional three-phase induction motor are used as a model to predict the static test results of a small-scale PCP-TLIM system. In this paper, additional dynamic tests are performed on the same small-scale PCP-TLIM system with two capsules of different diameters. The behaviors of the capsule inside the pump are observed and analyzed. The dynamic performances from the dynamic tests are compared with the theoretical predictions based on the TLIM equivalent circuit model.

Real-time Laser Monitoring based on Pipe Detective Operation

The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.

Design and Development of Pico-hydro Generation System for Energy Storage Using Consuming Water Distributed to Houses

This paper describes the design and development of pico-hydro generation system using consuming water distributed to houses. Water flow in the domestic pipes has kinetic energy that potential to generate electricity for energy storage purposes in addition to the routine activities such as laundry, cook and bathe. The inherent water pressure and flow inside the pipe from utility-s main tank that used for those usual activities is also used to rotate small scale hydro turbine to drive a generator for electrical power generation. Hence, this project is conducted to develop a small scale hydro generation system using consuming water distributed to houses as an alternative electrical energy source for residential use.

The Effects of Shot and Grit Blasting Process Parameters on Steel Pipes Coating Adhesion

Adhesion strength of exterior or interior coating of steel pipes is too important. Increasing of coating adhesion on surfaces can increase the life time of coating, safety factor of transmitting line pipe and decreasing the rate of corrosion and costs. Preparation of steel pipe surfaces before doing the coating process is done by shot and grit blasting. This is a mechanical way to do it. Some effective parameters on that process, are particle size of abrasives, distance to surface, rate of abrasive flow, abrasive physical properties, shapes, selection of abrasive, kind of machine and its power, standard of surface cleanness degree, roughness, time of blasting and weather humidity. This search intended to find some better conditions which improve the surface preparation, adhesion strength and corrosion resistance of coating. So, this paper has studied the effect of varying abrasive flow rate, changing the abrasive particle size, time of surface blasting on steel surface roughness and over blasting on it by using the centrifugal blasting machine. After preparation of numbers of steel samples (according to API 5L X52) and applying epoxy powder coating on them, to compare strength adhesion of coating by Pull-Off test. The results have shown that, increasing the abrasive particles size and flow rate, can increase the steel surface roughness and coating adhesion strength but increasing the blasting time can do surface over blasting and increasing surface temperature and hardness too, change, decreasing steel surface roughness and coating adhesion strength.

Accurate Control of a Pneumatic System using an Innovative Fuzzy Gain-Scheduling Pattern

Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. A methodology for obtaining high position accuracy with a linear pneumatic actuator is presented. During experimentation with a number of PID classical control approaches over many operations of the pneumatic system, the need for frequent manual re-tuning of the controller could not be eliminated. The reason for this problem is thermal and energy losses inside the cylinder body due to the complex friction forces developed by the piston displacements. Although PD controllers performed very well over short periods, it was necessary in our research project to introduce some form of automatic gain-scheduling to achieve good long-term performance. We chose a fuzzy logic system to do this, which proved to be an easily designed and robust approach. Since the PD approach showed very good behaviour in terms of position accuracy and settling time, it was incorporated into a modified form of the 1st order Tagaki- Sugeno fuzzy method to build an overall controller. This fuzzy gainscheduler uses an input variable which automatically changes the PD gain values of the controller according to the frequency of repeated system operations. Performance of the new controller was significantly improved and the need for manual re-tuning was eliminated without a decrease in performance. The performance of the controller operating with the above method is going to be tested through a high-speed web network (GRID) for research purposes.

Computational Analysis of the MembraneTargeting Domains of Plant-specific PRAF Proteins

The PRAF family of proteins is a plant specific family of proteins with distinct domain architecture and various unique sequence/structure traits. We have carried out an extensive search of the Arabidopsis genome using an automated pipeline and manual methods to verify previously known and identify unknown instances of PRAF proteins, characterize their sequence and build 3D structures of their individual domains. Integrating the sequence, structure and whatever little known experimental details for each of these proteins and their domains, we present a comprehensive characterization of the different domains in these proteins and their variant properties.

Experimental Investigation of a Mixture of Methane, Carbon Dioxide and Nitrogen Gas Hydrate Formation in Water-Based Drilling Mud in the Presence or Absence of Thermodynamic Inhibitors

Gas hydrates form when a number of factors co-exist: free water, hydrocarbon gas, cold temperatures and high pressures are typical of the near mud-line conditions in a deepwater drilling operation. Subsequently, when drilling with water based muds, particularly on exploration wells, the risk of hydrate formation associated with a gas influx is high. The consequences of gas hydrate formation while drilling are severe, and as such, every effort should be made to ensure the risk of hydrate formation is either eliminated or significantly reduced. Thermodynamic inhibitors are used to reduce the free water content of a drilling mud, and thus suppress the hydrate formation temperature. Very little experimental work has been performed by oil and gas research companies on the evaluation of gas hydrate formation in a water-based drilling mud. The main objective of this paper is to investigate the experimental gas hydrate formation for a mixture of methane, carbon dioxide & nitrogen in a water-based drilling mud with or without presence of different concentrations of thermodynamic inhibitors including pure salt and a combination of salt with methanol or ethylene glycol at different concentrations in a static loop apparatus. The experiments were performed using a static loop apparatus consisting of a 2.4307 cm inside diameter and 800 cm long pipe. All experiments were conducted at 2200 psia. The temperature in the loop was decreased at a rate of 3.33 °F/h from initial temperature of 80 °F.

Development of a Pipeline Monitoring System by Bio-mimetic Robots

To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.

The Effectiveness of Tebuconazole and Chitosan in Inhibiting the Growth of Fusarium Species on Winter Wheat Grain under Field Conditions

A three-year field experiment (2010-2012) was conducted to determine the abundance of epiphytic and endophytic filamentous fungi colonizing the grain of winter wheat cv. Bogatka. Wheat spikes were protected with tebuconazole or chitosan at the watery ripe stage. Untreated plants served as control. Tebuconazole exerted an inhibitory effect primarily on F. culmorum and F. graminearum, and its effectiveness was determined by the pressure from pathogens that infected wheat spikes during the growing season. Chitosan did not suppress the growth of Fusarium species and Alternaria alternata.

A Pipelined FSBM Hardware Architecture for HTDV-H.26x

In MPEG and H.26x standards, to eliminate the temporal redundancy we use motion estimation. Given that the motion estimation stage is very complex in terms of computational effort, a hardware implementation on a re-configurable circuit is crucial for the requirements of different real time multimedia applications. In this paper, we present hardware architecture for motion estimation based on "Full Search Block Matching" (FSBM) algorithm. This architecture presents minimum latency, maximum throughput, full utilization of hardware resources such as embedded memory blocks, and combining both pipelining and parallel processing techniques. Our design is described in VHDL language, verified by simulation and implemented in a Stratix II EP2S130F1020C4 FPGA circuit. The experiment result show that the optimum operating clock frequency of the proposed design is 89MHz which achieves 160M pixels/sec.

EU Families and Adolescents Quit Tobacco Focus Group Analysis in Hungary

In the frame of the European Union project entitled EU-Families and Adolescents Quit Tobacco (www.eufaqt.eu) focus group analysis has been carried out in Hungary to acquire qualitative information on attitudes towards smoking in groups of adolescents, parents and educators, respectively. It rendered to identify methods for smoking prevention/ intervention with family approach. The results explored the role of the family in smoking behaviour. Teachers do not feel responsibility in prevention or cessation of smoking. Adolescents are not aware of the addictive effect of the cigarette. Water pipe is popular among adolescent, therefore spreading of more information needed on the harmful effects of water pipe. We outlined the requirement for professionals to provide interventions. Partnership of EU-FAQT project has worked out antismoking interventions for adolescents and their families conducted by psychologists to ensure skill development to prevent and quit tobacco.

Computer Aided Design of Reshaping Process of Circular Pipes into Square Pipes

Square pipes (pipes with square cross sections) are being used for various industrial objectives, such as machine structure components and housing/building elements. The utilization of them is extending rapidly and widely. Hence, the out-put of those pipes is increasing and new application fields are continually developing. Due to various demands in recent time, the products have to satisfy difficult specifications with high accuracy in dimensions. The reshaping process design of pipes with square cross sections; however, is performed by trial and error and based on expert-s experience. In this paper, a computer-aided simulation is developed based on the 2-D elastic-plastic method with consideration of the shear deformation to analyze the reshaping process. Effect of various parameters such as diameter of the circular pipe and mechanical properties of metal on product dimension and quality can be evaluated by using this simulation. Moreover, design of reshaping process include determination of shrinkage of cross section, necessary number of stands, radius of rolls and height of pipe at each stand, are investigated. Further, it is shown that there are good agreements between the results of the design method and the experimental results.

Analytical Proposal to Damage Assessment of Buried Continuous Pipelines during External Blast Loading

In this paper, transversal vibration of buried pipelines during loading induced by underground explosions is analyzed. The pipeline is modeled as an infinite beam on an elastic foundation, so that soil-structure interaction is considered by means of transverse linear springs along the pipeline. The pipeline behavior is assumed to be ideal elasto-plastic which an ultimate strain value limits the plastic behavior. The blast loading is considered as a point load, considering the affected length at some point of the pipeline, in which the magnitude decreases exponentially with time. A closed-form solution for the quasi-static problem is carried out for both elastic and elasticperfect plastic behaviors of pipe materials. At the end, a comparative study on steel and polyethylene pipes with different sizes buried in various soil conditions, affected by a predefined underground explosion is conducted, in which effect of each parameter is discussed.