Geometric Contrast of a 3D Model Obtained by Means of Digital Photogrametry with a Quasimetric Camera on UAV Classical Methods

Nowadays, the use of drones has been extended to practically any human activity. One of the main applications is focused on the surveying field. In this regard, software programs that process the images captured by the sensor from the drone in an almost automatic way have been developed and commercialized, but they only allow contrasting the results through control points. This work proposes the contrast of a 3D model obtained from a flight developed by a drone and a non-metric camera (due to its low cost), with a second model that is obtained by means of the historically-endorsed classical methods. In addition to this, the contrast is developed over a certain territory with a significant unevenness, so as to test the model generated with photogrammetry, and considering that photogrammetry with drones finds more difficulties in terms of accuracy in this kind of situations. Distances, heights, surfaces and volumes are measured on the basis of the 3D models generated, and the results are contrasted. The differences are about 0.2% for the measurement of distances and heights, 0.3% for surfaces and 0.6% when measuring volumes. Although they are not important, they do not meet the order of magnitude that is presented by salespeople.

Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts

The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.

Enhancing Human Mobility Exoskeleton Comfort Using Admittance Controller

Human mobility exoskeletons have been in development for several years and are becoming increasingly efficient. Unfortunately, user comfort was not always a priority design criterion throughout their development. To further improve this technology, exoskeletons should operate and deliver assistance without causing discomfort to the user. For this, improvements are necessary from an ergonomic point of view. The device’s control method is important when endeavoring to enhance user comfort. Exoskeleton or rehabilitation device controllers use methods of control called interaction controls (admittance and impedance controls). This paper proposes an extended version of an admittance controller to enhance user comfort. The control method used consists of adding an inner loop that is controlled by a proportional-integral-derivative (PID) controller. This allows the interaction force to be kept as close as possible to the desired force trajectory. The force-tracking admittance controller modifies the actuation force of the system in order to follow both the desired motion trajectory and the desired relative force between the user and the exoskeleton.

Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks

The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.

A Mixed-Methods Approach to Developing and Evaluating an SME Business Support Model for Innovation in Rural England

Cumbria is a geo-political county in Northwest England within which the Lake District National Park, a UNESCO World Heritage site is located. Whilst the area has a formidable reputation for natural beauty and historic assets, the innovation ecosystem is described as ‘patchy’ for a number of reasons. The county is one of the largest in England by area and is sparsely populated. This paper describes the needs, development and delivery of an SME business-support programme funded by the European Regional Development Fund, Lancaster University and the University of Cumbria. The Cumbria Innovations Platform (CUSP) Project has been designed to respond to the nuanced needs of SMEs in this locale, whilst promoting the adoption of research and innovation. CUSP utilizes a funnel method to support rural businesses with access to university innovation intervention. CUSP has been built on a three-tier model: Communicate, Collaborate and Create. The paper describes this project in detail and presents results in terms of output indicators achieved, a beneficiary telephone survey and wider economic forecasts. From a pragmatic point-of-view, the paper provides experiences and reflections of those people who are delivering and evaluating knowledge exchange. The authors discuss some of the benefits, challenges and implications for both policy makers and practitioners. Finally, the paper aims to serve as an invitation to others who may consider adopting a similar method of university-industry collaboration in their own region.

Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios

Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.

An Investigation to Study the Moisture Dependency of Ground Enhancement Compound

Lightning protection consists of three main parts; mainly air termination system, down conductor, and earth termination system. Earth termination system is the most important part as earth is the sink and source of charges. Therefore, even when the charges are captured and delivered to the ground, and an easy path is not provided to the charges, earth termination system would lead to problems. Soil has significantly different resistivities ranging from 10 Ωm for wet organic soil to 10000 Ωm for bedrock. Different methods have been discussed and used conventionally such as deep-ground-well method and altering the length of the rod. Those methods are not considered economical. Therefore, it was a general practice to use charcoal along with salt to reduce the soil resistivity. Bentonite is worldwide acceptable material, that had led our interest towards study of bentonite at first. It was concluded that bentonite is a clay which is non-corrosive, environment friendly. Whereas bentonite is suitable only when there is moisture present in the soil, as in the absence of moisture, cracks will appear on the surface which will provide an open passage to the air, resulting into increase in the resistivity. Furthermore, bentonite without moisture does not have enough bonding property, moisture retention, conductivity, and non-leachability. Therefore, bentonite was used along with the other backfill material to overcome the dependency of bentonite on moisture. Different experiments were performed to get the best ratio of bentonite and carbon backfill. It was concluded that properties will highly depend on the quantity of bentonite and carbon-based backfill material.

A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Assessment of Negative Impacts Affecting Public Transportation Modes and Infrastructure in Burgersfort Town towards Building Urban Sustainability

The availability of public transportation modes and qualitative infrastructure is a burning issue that affects urban sustainability. Public transportation is indispensable in providing adequate transportation means to people at an affordable price, and it promotes public transport reliance. Burgersfort town has a critical condition on the urban public transportation infrastructure which affects the bus and taxi public transport modes and the existing infrastructure. The municipality is regarded as one of the mining towns in Limpopo Province considering the availability of mining activities and proposal on establishment of a Special Economic Zone (SEZ). The study aim is to assess the efficacy of current public transportation infrastructure and to propose relevant recommendations that will unlock the possibility of future supportable public transportation systems. The Key Informant Interview (KII) was used to acquire data on the views from commuters and stakeholders involved. There KII incorporated three relevant questions in relation to services rendered in public transportation. Relevant literature relating to public transportation modes and infrastructure revealed the imperatives of public transportation infrastructure, and relevant legislation was reviewed concerning public transport infrastructure. The finding revealed poor conditions on the public transportation ranks and also inadequate parking space for public transportation modes. The study reveals that 100% of people interviewed were not satisfied with the condition of public transportation infrastructure and 100% are not satisfied with the services offered by public transportation sectors. The findings revealed that the municipality is the main player who can upgrade the existing conditions of public transportation. The study recommended that an intermodal transportation facility must be established to resolve the emerging challenges.

Reimagining the Learning Management System as a “Third” Space

This paper focuses on a sense of belonging, isolation, and the use of a learning management system as a “third space” for connection and community. Given student use of learning management systems (LMS) for courses on campuses, moderate to high use of social media and hand-held devices, the author explores the possibilities of LMS as a third space. The COVID-19 pandemic has exacerbated student experiences of isolation, and research indicates that students who experience a sense of belonging have a greater likelihood for academic retention and success. The impacts on students of an LMS designed for student employee orientation and training were examined through a mixed methods approach, including a survey, individual interviews, and focus groups. The sample involved 250-450 undergraduate student employees at a US northwestern university. The goal of the study was to find out the efficiency and effectiveness of the orientation information for a wide range of student employees from multiple student affairs departments. And unexpected finding emerged within the study in 2015 and was noted again as a finding in the 2017 study. Students reported feeling like they individually connected to the department, and further to the university because of the LMS orientation. They stated they could see themselves as part of the university community and like they belonged. The orientation, through the LMS, was designed for and occurred online (asynchronous), prior to students traveling and beginning university life for the academic year. The students indicated connection and belonging resulting from some of the design features. With the onset of COVID-19 and prolonged sheltering in place in North America, as well as other parts of the world, students have been precluded from physically gathering to educate and learn. COVID-19 essentially paused face-to-face education in 2020. Media, governments, and higher education outlets have been reporting on widespread college student stress, isolation, loneliness, and sadness. In this context, the author conducted a current mixed methods study (online survey, online interviews) of students in advanced degree programs, like Ph.D. and Ed.D. specifically investigating isolation and sense of belonging. As a part of the study a prototype of a Canvas site was experienced by student interviewees for their reaction of this Canvas site prototype as a “third” space. Some preliminary findings of this study are presented. Doctoral students in the study affirmed the potential of LMS as a third space for community and social academic connection.

Implementing Pro-Poor Policies for Poverty Alleviation: The Case of the White Paper on Families in South Africa

The role of the government to tangibly alleviate poverty, improve and sustain the quality of people’s lives remains a “work in progress” twenty-two years after the dawn of democracy in South Africa despite a host of socio-economic programs and pro-poor policies and legislations. This paper assesses the development process and the implementation of the White Paper on Families in South Africa as one of the pro-poor policies intended to curb poverty and redress the imbalances of the apartheid regime. The paper is the result of a qualitative implementation research theory facilitated through in-depth interviews with social work managers complemented by literature and policy review techniques. It investigates the level of basic knowledge and understanding as well as the implementation challenges of the White Paper on Families as causes of its failure. The paper emphasizes the importance of the family-centered approach in the implementation of pro-poor policies. To facilitate the understanding of the White Paper on Families by its users, the Department of Social Development needs take stock of the identified challenges of its implementation so as to facilitate its success in fostering positive family well-being that will directly contributes to the overall socio-economic development of South Africa.

Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing

Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1” square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 °C, at a rate of 0.005”/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude.

The Study of Digital Transformation Skills and Competencies Framework at Umm Alqura University

The lack of digital transformation professionals could prevent Saudi Arabia’s universities from providing digital services. The task of understanding what digital skills are needed within an organization, measuring the existing skills, and developing or attracting talents is a complex task. This paper provides a comprehensive analysis of the digital transformation skills needed in the organizations who seek digital transformation and identifies the skills and competencies framework DigSC built on Skills Framework for the Informational Age (SFIA) framework that is adopted by the Ministry of Communications and Information Technology (MCIT) in Saudi Arabia. The framework adopted identifies the main digital transformation skills clusters, categories and levels of responsibilities for each job description to fill the gap between this requirement and the digital skills supplied by the Umm Alqura University (UQU).

Effect of Different Contaminants on Mineral Insulating Oil Characteristics

Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.

Analyzing the Potential of Job Creation by Taking the First Step Towards Circular Economy: Case Study of Brazil

The Brazilian economic projections and social indicators show a future of crisis for the country. Solutions to avoid this crisis scenario are necessary. Several developed countries implement initiatives linked to sustainability, mainly related to the circular economy, to solve their crises quickly - green recovery. This article aims to assess social gains if Brazil followed the same recovery strategy. Furthermore, with the use of data presented and recognized in the international academic society, the number of jobs that can be created, if Brazil took the first steps towards a more circular economy, was found. Moreover, in addition to the gross value in the number of jobs created, this article also detailed the number of these jobs by type of activity (collection, processing, and manufacturing) and by type of material.

Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant

In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation.

A BIM-Based Approach to Assess COVID-19 Risk Management Regarding Indoor Air Ventilation and Pedestrian Dynamics

In the context of the international spread of COVID-19, the Centre Scientifique et Technique du Bâtiment (CSTB) has led a joint research with the French government authorities Hauts-de-Seine department, to analyse the risk in school spaces according to their configuration, ventilation system and spatial segmentation strategy. This paper describes the main results of this joint research. A multidisciplinary team involving experts in indoor air quality/ventilation, pedestrian movements and IT domains was established to develop a COVID risk analysis tool based on Building Information Model. The work started with specific analysis on two pilot schools in order to provide for the local administration specifications to minimize the spread of the virus. Different recommendations were published to optimize/validate the use of ventilation systems and the strategy of student occupancy and student flow segmentation within the building. This COVID expertise has been digitized in order to manage a quick risk analysis on the entire building that could be used by the public administration through an easy user interface implemented in a free BIM Management software. One of the most interesting results is to enable a dynamic comparison of different ventilation system scenarios and space occupation strategy inside the BIM model. This concurrent engineering approach provides users with the optimal solution according to both ventilation and pedestrian flow expertise.

Website Evaluation of Travel Agencies Class A in Saudi Arabia and Egypt Using Extended Version of Internet Commerce Adoption Model: A Comparative Study

This research aims to explore how well the extended model of internet commerce adoption (eMICA) model is often used to determine the extent of internet commerce adoption in the travel agencies sector in both Egypt and Kingdom of Saudi Arabia (KSA). The web content analysis method was used to analyze the level of adoption of Egyptian travel agencies and Saudi travel agencies according to data immensely available on their websites. Therefore, each site was categorized according to the phases and levels proposed. In order to achieve this, 120 websites were evaluated by the two authors over a three-month period, from August to October 2020, and then categorized according to the phases and levels of (eMICA). The results show that there are deficiencies in the application of the eMICA model by both KSA and Egyptian travel agencies, generally, updating their websites, the absence of quality certification, offering secure online payment, virtual tours, and videos using Flash animation. In general, the Egyptian companies slightly outperformed the KSA ones in applying eMICA model.

Effect of Carbon-Free Fly Ash and Ground Granulated Blast-Furnace Slag on Compressive Strength of Mortar under Different Curing Conditions

This study investigates the effect of using carbon-free fly ash (CfFA) and ground granulated blast-furnace slag (GGBFS) on the compressive strength of mortar. The CfFA used in this investigation is high-quality fly ash and the carbon content is 1.0% or less. In this study, three types of blends with a 30% water-binder ratio (w/b) were prepared: control, binary and ternary blends. The Control blend contained only Ordinary Portland Cement (OPC), in binary and ternary blends OPC was partially replaced with CfFA and GGBFS at different substitution rates. Mortar specimens were cured for 1 day, 7 days and 28 days under two curing conditions: steam curing and water curing. The steam cured specimens were exposed to two different pre-curing times (1.5 h and 2.5 h) and one steam curing duration (6 h) at 45 °C. The test results showed that water cured specimens revealed higher compressive strength than steam cured specimens at later ages. An increase in CfFA and GGBFS contents caused a decrease in the compressive strength of mortar. Ternary mixes exhibited better compressive strength than binary mixes containing CfFA with the same replacement ratio of mineral admixtures.